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REPRESENTATIONS OF INTEGERS AS SUMS OF FOUR POLYGONAL
NUMBERS AND PARTIAL THETA FUNCTIONS

KATHRIN BRINGMANN, MIN-JOO JANG, AND BEN KANE

1. INTRODUCTION AND STATEMENT OF RESULTS

The study of representations of integers as sums of polygonal numbers has a long and storied
history. For m € N>3 and ¢ € Ny, let p,,,(¢) be the ¢-th m-gonal number

pon(0) = %(m _ o) - %(m _ 4y,

which counts the number of points in a regular m-gon with side lengths /. Fermat famously
conjectured in 1638 that every positive integer may be written as the sum of at most m m-gonal
numbers, or equivalently that for every n € Ny

Z pm(lj) =n (1.1)

1<j<m

is solvable. Lagrange proved the four-squares theorem in 1770, resolving the case m = 4 of Fermat’s
conjecture. The case m = 3 of triangular numbers was solved by Gauss in 1796 and is sometimes
called the Eureka Theorem because Gauss famously marked in his diary “EYPHKA! num=A +
A+ A”. Cauchy [3] finally completed the full proof of the conjecture in 1813, and Nathanson [11]
shortened Cauchy’s proof in 1987; he also provided some additional history.

More generally, given o € N? (throughout we write vectors in bold letters) and n € N one may
consider Diophantine equations of the type

Z ajpm (4) = n. (1.2)

1<j<d

It is natural to ask for a classification of those n € N for which (1.2) is solvable with £ € N¢. The
case m = 4 is well-understood: by applying the theory of modular forms (see [20, Proposition 11]),
for m = 4 one not only knows the existence of a solution to (1.1) but has a precise formula for the
number of such solutions. Namely, Jacobi showed in 1834 (see e.g. [19, p. 119]) that

#LeZ: Y L=nj=8) d (1.3)

1<j<4 4djn

Although formulas like (1.3) are rare, they are often “almost true” in the sense that the number of
solutions to equations like (1.2) with £ € Z¢ may be written in the shape of (1.3) up to an error
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term. For example, in the case @ = 1 with arbitrary even d and m = 4, Ramanujan stated [12,
(146)] a formula for the number of solutions to (1.2) which was later proven by Mordell [10]. Set

rop(n) == # £ € 72 . Z @:n

1<j<2k

and suppose for simplicity that £ > 10 is even. Ramanujan’s claim [12, (146)] together with [12,
(143)] implies that there exists 6 > 0 such that for n € N

_ 2]{7(—1)"+1

() = E 1y 5o §(—1)d+%§dk‘1 i) <nk_1_5) : (1.4)

where By, is the k-th Bernoulli number. More generally, Kloosterman [7, (I1.3I)] applied the Circle
Method to show formulas resembling (1.4) (where the main term is the singular series from the
Circle Method) in the case m =4 and d = 4 of (1.2).

The goal of this paper is to obtain formulas resembling (1.4) for the number of solutions

Tma(n) =# L€ N : Z ajpm () =n
1<j<d

Note that in (1.3) and (1.4), we are counting solutions with ¢; € Z, while the goal in this paper is
to restrict to solutions with ¢; € Np. The reason for this restriction is the connection with regular
polygons. Although the formula defining p,,(¢;) is still well-defined for ¢; € Z, their interpretation
as the number of points in a regular m-gon with side lengths ¢; is lost when ¢; < 0 because side-
lengths cannot be negative. For m € {3,4}, the restriction ¢; € Ny does not lead to a fundamentally
different question than taking ¢; € Z. Indeed, using that p3(—¢—1) = p3(¢), we obtain for m =3 a
bijection between solutions with ¢; > 0 and those with ¢; < 0. Similarly, since ps(—¢) = p4(¢), we
have for m = 4 a bijection between solutions with ¢; > 0 and those with ¢; < 0. The case ¢; = 0 is
double-counted, but formulas for solutions with ¢; = 0 may be obtained by taking d — d — 1 and
removing «a; in (1.2). Thus for m € {3,4}, finding the number of solutions to (1.2) with ¢; € Ny is
equivalent to finding the number of solutions with ¢; € Z, and we hence assume m > 5 throughout.
To the best of our knowledge, in this case formulas like (1.4) for the number of solutions to (1.2)
if £ € Ng are not known. However, standard techniques yield formulas of this type for £ € Z%.
Completing the square in (1.2), solutions to (1.2) are in one-to-one correspondence with solutions
to certain sums of squares with fixed congruence conditions. Using this relationship, one finds that
studying

Thma(n) =#Tc VAR Z ajpm(z;) =n
1<j<d

is equivalent to evaluating s; , , (An + B) (for some appropriate A, B, r, and M), where

S;M7a(n) ::# ZI}EZd Z O@x?:ny -Z'jET (mod M)
1<j<d

The generating function (g := €™ with 7 € H:= {7 € C: Im (1) > 0})

rMalT) = Z Sr.M,a(1)qM

n>0
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is a modular form of weight % for some congruence subgroup (see, e.g., [13, Proposition 2.1}).
Using the theory of modular forms, formulas like (1.4) may be obtained by splitting O} Mo 1nto
an Eisenstein series and a cusp form and using a result of Deligne [5] to bound the coefficients
of the cusp form as an error term. As noted above, although one obtains formulas like (1.4) for

% «(n) due to its connection with modular forms, one loses the interpretation for p,,(¢;) in terms

m,a
of regular m-gons. The aim of this paper is to link the study of r,, o(n) to modular forms while
simultaneously preserving the connection with regular m-gons by restricting to £; € Np.

However, the restriction of /; to Ny breaks an important symmetry and as a result the generating
function for r,, o(n) is unfortunately not a modular form, so one cannot employ standard methods
to obtain a formula for r,, o(n). Indeed, in his last letter to Hardy in 1920, Ramanujan commented
that “unlike the ‘False’ theta functions”, the mock theta functions that he discovered “enter into
mathematics as beautifully as the ordinary theta functions”. However, contrary to Ramanujan’s
claims about the false theta functions, recent work by Nazaroglu and the first author [2] shows
that the generating function has some modular properties and in particular can be “completed”
to a function transforming like a modular form. This gives that the generating function has some
explicit “obstruction to modularity”. The investigation of this obstruction to modularity plays a
fundamental role in this paper and causes most of the technical difficulties.

Given the results in [2], one approach to obtaining formulas like (1.4) would be to establish
structure theorems or generalizing results on modular forms to extend to functions with this type
of obstruction to modularity. In this paper, we instead link the 7, (1) and 7, 5 (n), showing that
they are essentially equal up to an error term. As above, by completing the square, one finds that
this is equivalent to relating s} 5, ,(An + B) to s m,a,c(An + B) (for some A, B,C'), where

SpMa,c(n) =#x € VAR Z ajx? =n, z; =7 (mod M), z; >C
1<5<d

If C =1 (ie., if £ € N%), then we omit it in the notation. Heuristically, one would expect that
solutions with ¢;z; > 0 are equally distributed independent of the choice of ¢; € {£1}. Our main
theorem shows that this is indeed the case.

Theorem 1.1. Let o € N* and r, M € N be given.
(1) We have

1 5
Srata(n) = 1657 ara(n) + O (4.
(2) For m > 4 we have

) = 17 a(n) + O (n847).
Remark. The main term of s7 ), o(n) comes from the Eisenstein component of O Mo The com-
putation of the corresponding Eisenstein series appears throughout the literature in a variety of
different shapes. In one direction, Kloosterman [7] computed this component as the singular series
coming from the Circle Method. On the other hand, the corresponding Eisenstein series appears
in the work of Siegel [15, 16] and follow-up work of Weil [18], van der Blij [17], and Shimura [14]
in two different forms. Firstly, the Eisenstein series may be realized as a certain weighted average
of the solutions over the genus of the given sum of squares with congruence conditions. Secondly,
Siegel computed its coefficients as certain p-adic limits. Finally, since the space of modular forms
of a given weight and congruence subgroup is a finite-dimensional vector space, one may explicitly
construct a basis and determine the Eisenstein series component using Linear Algebra.
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As noted above, combining Theorem 1.1 with known techniques from the theory of modular forms
yields formulas resembling (1.4). As a first corollary, we obtain such a formula for the number of
representations of n as a sum of four hexagonal numbers; the main term is given in terms of the
sum of divisors function o(n) := 3y, d.

Corollary 1.2. We have
1 5
76,(1,1,1,1)(n) = 1—60(2n +1)+0 (n%ﬁ“) .

Remark. Since o(2n+1) > 2n+1, Corollary 1.2 implies that rg o(n) > 0 for n sufficiently large. Guy
[6] proposed a study of the numbers which are not the sum of four polygonal numbers. Moreover,
Corollary 1.2 implies that the number of such solutions is > n.

Another example is given by sums of five hexagonal numbers where the last hexagonal number
is repeated at least twice. To state the result, let (3) be the generalized Legendre symbol.

Corollary 1.3. For a = (1,1,1,2) and m = 6, we have

1 8 15

In particular, for n sufficiently large
r67a(n) > 0.

The proofs of Corollaries 1.2 and 1.3 rely on formulas of Cho [4] which use the fact that ©, ,
is an Eisenstein series in the cases a = (1,1,1,1) and a« = (1, 1, 1, 2); indeed, as pointed out by Cho
in [4, Examples 3.3 and 3.4], the space of modular forms containing them is spanned by Eisenstein
series in these cases. However, to obtain similar corollaries from Theorem 1.1, we do not require
the corresponding theta function to be an Eisenstein series. In order to exhibit how to use Theorem
1.1, we give one such example.

Corollary 1.4. For a = (1,1,1,1) and m = 5, we have

1 15
5 111,0)(n) = 7o(6n+1) +0 <n 16+a) _

The paper is organized as follows. In Section 2, we connect sums of squares and polygonal
numbers, introduce partial theta functions, and relate them to theta functions and false theta
functions. In Section 3, we recall some facts about Farey fractions that are used for the Circle
Method. In Section 4, we give modular transformation properties of the theta functions and the
false theta functions in a shape that is useful for our application of the Circle Method. Section 5 is
devoted to studying the obstruction to modularity of the false theta functions and bounding them
in a suitable way to use in the Circle Method. In Section 6, we apply the Circle Method to prove
Theorem 1.1. Finally, we prove Corollaries 1.2, 1.3, and 1.4 in Section 7 to demonstrate how to
apply Theorem 1.1 to obtain identities resembling (1.4).

2. SUMS OF SQUARES WITH CONGRUENCE CONDITIONS AND POLYGONAL NUMBERS

In this section, we relate sums of polygonal numbers and sums of squares and give a relationship
between s, 7o and 8;7 Mo Without loss of generality, we pick the ordering a; > aj4q for j €
{1,2,3} in (1.2). As noted in the introduction, we investigate sums of polygonal numbers via a
connection with sums of squares satisfying certain congruence conditions. Writing

1 m—4 \? (m—4)?
pul®) = (m =) (- 5220 ) - A

> (2.1)
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one sees directly that
_ 2
Prma (1) = S_(m-1) 2(m—2),00—(m—1) | 8(m =20+ Y a;(m —4)
1<j<4
Using (2.1), we have the generating function

2
m—4
Zrma Z Z] 1opm () _ZJ 1 Js(m 2) H Z qaJ 2 72(7%2)) ‘

n>0 e€N4 7=1/¢€Ng

We restrict our investigation of solutions to (1.2) to the case d = 4 and £ € N3. We claim that
most of the solutions to (1.2) come from solutions with ¢; # 0, i.e., sums of precisely four polygonal
numbers instead of at most four polygonal numbers. Defining rf, ,(n) via the generating function

(m— 4)

Zrﬁa(n)q" = Z qZ§:1ajp7n(€j) — g i1 Y Sy H anj %)2, (2.2)

n>0 LeN4 j=1¢eN

a direct calculation using [1, Lemma 4.1(a)] shows the following.

Lemma 2.1. For o € N*, we have

Tm,a(n) = r:{%a(n) +0 (n%+€> .

Define the partial theta function

rMa 5 SrMa qM
n>0

which is closely related to the generating function of 7‘;@70‘(71) by (2.2).

Lemma 2.2. For m > 5 and o € N*, we have
4 (m-1)2 T
Zﬁ%ﬂ(n)qn =4q =1 % Sty 97—; 2(m—2),« (Z) '
n>0

By Lemma 2.2 and Lemma 2.1, to prove Theorem 1.1 it suffices to approximate the Fourier
coefficients of @T (7). These functions @:M o are closely related to the usual (unary) theta
functions ¥(r, M; T) and false theta functions F). p/(7), defined for 0 <r < M —1, M € N by

Frp(r) = Z sgn(v)qam Hor, M;7) := Z q2M . (2.3)

v=r (mod 2M) v=r (mod M)

A direct calculation shows the following.
Lemma 2.3. For M €N, 0 <r < 2M, and o € N*, we have
1
Ohma =15 2 [I002M5207) [ Fowr o).
JC{1,2,3,4} j€J 0e{1,2,3,4}\J
By Lemmas 2.2 and 2.3, for J C {1,2,3,4} it is natural to define

7,2
Fratau(q) = q 30 Z0=0% [ 0 (r,2M;2057) [ | Frar (2ae7)
jeJ 0¢J
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where hereafter ¢ ¢ J means ¢ € {1,2,3,4} \ J. Then for each J C {1,...,4} we set

rMaJ g CrMaJ
n>0

If J = {1,2,3,4}, then we omit J in the notation. A straightforward calculation yields the following.

Lemma 2.4.
(1) For M €N, 0 <r < 2M, and o € N*, we have

Fr,M,a(Q)_q 201 Z] 1a]6r2Ma( )

In particular, for every n € Ny

* 2
CrMa(n) = SyoMe | 2Mn+r1 E a;
1<5<4

(2) For m >5 and a € N*, we have

z *
cmvm_27a 4 n - a] = Tm,a(n)‘
1<5<4

3. BASIC FACTS ON FAREY FRACTIONS

The Farey sequence of order N € N is the sequence of reduced fractions in [0, 1) whose denomi-

nator does not exceed N. If Z, % are adjacent elements in the Farey sequence then their mediant

is ZIZI When computing mediants below, we consider =t to be adjacent to ¢ and take the

1
mediant between & Nl and 1- The Farey sequence of order N is then iteratively defined by placing
the mediant between two adjacent Farey fractions of order N — 1 if the denominator of the mediant
in reduced terms is at most N. We see that two Farey fractions Z—i < % of order N are adjacent if

and only if the mediant in reduced terms has denominator larger than N. This implies that

hky — bk =1, (3.1)

and the converse is also true; if hk; — hik =1, then 2 s and are adjacent Farey fractions of order
h1

max(k, k1). For three adjacent Farey fractions 71 < E Z—;, we set for j € {1,2} (note that k;
depends on h)
okj(h) ==k +k; — N. (3.2)
Since the mediant between adjacent terms has denominator larger than N and k; < N, we have
1< on,j(h) <k (3:3)

The following lemma is straightforward to prove.
Lemma 3.1. If% < Z—; are adjacent Farey fractions of order N, then 1 — Z—; <1- % are also

adjacent Farey fractions of order N and

ok2(h) = or1(k —h).
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For n € N, set N := |[{/n] and define arcs along the circle of radius e N through 2™ with
T= % + % € H. Note that 7 € H is equivalent to Re(z) > 0. Specifically, we choose Farey fractions
% of order N with 0 < h < k < N and ged(h, k) = 1 and set 2 := k(gz —i®) with 0} , < ® <9, ;.
Here, for adjacent Farey fractions Z—i < % < Z—; in the Farey sequence of order N, set

.1 o1
R kK1) PR Rk 4 k)
By (3.3), we have

’ " 1 .
‘q)’ S max {ﬁh,lwﬁh,k} < W ¥ € {1,2} (34)

4. MODULAR TRANSFORMATIONS

Kloosterman'’s version of the Circle Method [7] plays a fundamental role in the proof of Theorem
1.1. In order to integrate along arcs from —1}, & to v k> one requires the asymptotic behaviour of
Fy M7 (T) near E Transformation properties relating the cusp k to ‘0o thus play a pivotal role
in determining the asymptotic growth near the cusp h. To state these, for a,b € Z, ¢ € N define

the Gauss sum i s
Gl(a,b;c) := Z ¢ 2 (at?+bt)
£ (mod c)

4.1. The theta functions. We use the following modular transformation properties.

Lemma 4.1. We have

‘rr'La

h y nr miry
19 <7‘, 2M72Oé] <E + %)) ¢ ]\;{]I;a Z 4Mka z+ Mk G(ZMCth 27‘()éjh+l/ kf)
j%

Proof. Writing v = r + 2Ma + 2M k(¢ with o (mod k) and ¢ € Z in definition (2.3), we obtain

27r1a 2mic

9 <r, 2M; 2av; (% + %)) = Z e ZMkL( +2Ma)? Ze s (r+2Mot2MEe)?iz
a (mod k) LET

Using the modular inversion formula (see [13, (2.4)])

19<T,M;—1>:M_%(—i7')% Z e2ﬂ1€fk19(k,M;T)

T
k (mod M)

on the inner sum, the claim easily follows. (]

4.2. The false theta functions. We next establish analogous modular properties for the false
theta functions. For p € Z \ {0} set

7\'.’102

e ) e_ 1IMkaoj=

Z(p, ks 2) = Ina, (1, ks 2) = lim [ mdm- (4.1)

Throughout we write > 77, for the sum where the v = 0 term is counted with a factor 5 and

moreover abbreviate
4
So=11Y

veNi  j=1v;20
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For d € N, set
Lg:=[1—-d,—1]U]IL,d].

Lemma 4.2. We have

h Z‘Z 1 ‘rriajhr _¢+ﬂi7‘y
Fovul 20—+ —)) = —F—=—=e M sgn(v)e *Mreir MEG(2Magh, 2ahr + vy k)
’ ko k Mka;z =
wzajhr
Ty oy ZeMZ G(2Majh, 2a;h + 6 K)T(L + 2M kv, k; 2).
k:oz]zw 0eL sy v>0

Proof. We have, writing v =r + 2Ma +2Mkl (0 <a<k—-1,0€Z)

. k—
h 12 ‘II"LQ -h
Fr,M <2C¥j (E + E>> § e Mk (r+2Ma)? Fr+2Ma Mk(ZQJZZ)
a=0

Choosing the +-sign in [2, two displayed formulas after (4.5)] implies that

1 i M-1 o —7+zoo+a
Fs <—;> -T2 Z Y, <(1) 01> ( =2 / Md57
r=1

i(3+7)

1 2 0 —1 _smi [ 2 . [(@pr
T I ) Bt i C o)

v=r (mod 2M)

where

Changing 7 +— —%, and using
Fou(r) = Fum(m) =0, Foy—r (1) = —Fr o (7),

S e {0 if 7 2 —0 (mod 2M),

8 (mod 2M) 2M  if r = —¢ (mod 2M),

we obtain, after a short calculation

2mil3

1 us’
Fyu <—_> N 55 Fy ()
T

; i T4+ico+¢e
e T VoT Z 62216/3/ Md@ (4.2)
0

8 (mod 2M) i3 —7)
Thus

e% 27mi(r+2Ma)p 7
Froma,mk(204i2) = ——c Z e Mk Fg g < )
2/ Mkajiz 5 (mod 200K) 20sz

3mi

o 2w(+2Ma>6/ 2ot fek(3)
0

T — e 2ME
V 201z 3 (m§2Mk) ; i
v\~ 2052

The first term can easily be rewritten, giving the first summand claimed in the lemma.

dj.
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In the second term of (4.2), fo amr = 0 and for 5 # 0 and 7 = FZJZ we write the integral as

2
co—ie _T¥°3

Z’ Triuzr e 2M
—— lim E ve 2M di.
2M s—o+ /iT+5 V=3 3

v=4 (mod 2M)

We split up the integral in a way that allows § = 0 to be directly plugged in termwise by Abel’s
Theorem. For this, we use [2, displayed formula after (3.4)] to obtain that

7'r7‘2

oo—ie e_Wf Z\/W -
= — f . T _ . B ‘
/Wr(S Ve d3 > (Sgn(y) + er <w 2M( ir 5)>>

We split the error function as

f<‘ < s ‘”)) \/—WM( ), e (4.3)

erf | iv —(—iT — - . .
2M Mnv/—iT — 6 V2Mnvy —iT — 0

Plugging in the asymptotic expansion of the error function towards oo for the error function, one

finds that the series in v of sgn(v) plus the first term of (4.3) converges absolutely for 6 > 0, and
hence we may just take the limit 6 — 07. For the second term, we need to compute

2
_m%s T (B2Mu)2s  —TBs

e 2M 1 e 2M e 2M
im ———— \/—zT > v PR —— VZ > B+ 2Mv 3

v=4 (mod 2M)

Using the fact that > 7 ﬂlMV = ﬁz_ifﬁyg, the above series converges absolutely for § > 0 and hence
+
by Abel’s Theorem we have, for 5 # 0

/T+ioo+a fﬁ,M(?ﬂ) da
0 Vi — 1)

1 T i 2
_ ' [_mT (B+2Mv)2r
NoIi V§> gi <sgn (B£2Mv) + erf (z(ﬁ +2Mv) 5 >> e2M

1 | miT i g2
+ — | sgn(pB) +erf e2ni T
i < gn(f) < B M))
We now use the following identity from [2, (3.8)] (s € R\ {0}, Re(V) > 0)

(Sgn( ) + erf (’LS\/_>> L lim b &daz,

T en0t J_oo T — (1 +ig)
to obtain that

/T—I—ioo—l—s fB,M (3)
0

i(3— 7_) Tl £ €_>0+

z2

dx

-1+ zs)(ﬁ + 2Mv)

9
iy /°° s p
— im — dx.
V2Mr e—0t J_oo . — (1 + i)

From this the second claimed term in the lemma may directly be obtained. O
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5. BOUNDING Z(pu, k; 2)
5.1. Rewriting Z(u, k; z). In the following lemma, we rewrite Z(u, k; z). To state the lemma, set

n(atu)?

g(z) =e ™ Ry(z) :=Re(g(z)),  Iy(z):=Im(g(z)).
Lemma 5.1. For every 6 >0 and p € Z \ {0}, we have

w2 _ w(z£lu)?

) o)
_m? 1
T(p, ks z) = sgn(p)mie M5 + / (R (y1.2) + Ly (y2,0)) dov + sgn(p) > + / —e Mt de
-5 — /s

for some y1 z,y2 o between 0 and x (in particular, y; , € (=6,9)).

Proof. We make the change of variables x — x + p in (4.1) to rewrite the integral as

a2 7r(ac+M)2

00 G_W-ajz o 6_4Mkajz
/ T = / C
o T — (1 4ie)p oo X — I

We then split the integral into three pieces as

oo 4 [ -
/ :/ +/ +/ T+ T+ T
—00 -0 é —00

To evaluate Z;, we note that by Taylor’s Theorem, there exist y; , and y2 , between 0 and x such
that

Ry(z) = Ry(0) + R, (y1,2) and Iy(x) = 1,(0) + I (y2,2) .

Therefore

7\';1,2

g(x) = e *Mkojz | (R'g(yl,x) + z'I;(ygw)) T.
Thus

P,

e ki 4 (R (y1,0) + id)(Y2,0)) @

lim Z; = lim - dz
e—0+ e—0+ J 5 T — el
__m® 6 1 0
=l AMka = d R, 1] dz. 5.1
ot © ’ /_5 x —ien v /—5 (Ry(y1.0) +il5(ya,0)) du (5-1)

The second term on the right-hand side of (5.1) is precisely the second term in the claim.
Evaluating the integral explicitly, the first term in (5.1) equals

_ 7ru2 é 1 - 7"#«2
IMkajz i drx =e *Mkiz lim (Log (§ —icu) — Log (=& — ie . 5.9
e lim (Log (9 — iep) — Log ( ) (5.2)

(&

Here and throughout, Log denotes the principal branch of the complex logarithm. We then evaluate,
using the fact that p # 0,

lim Log (6 —ieu) = log(d),

e—07t
lim Log (8 — izj) = Log(—¢) = log(é) + i | %f w<0,
Log(—9) — 2mi = log(d) — mi if u > 0.

e—0t

Therefore (5.2) becomes

i
)e 4Mkajz .

misgn(p
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Since the paths of integration in Zy and Z3 do not go through zero, we can plug in € = 0 to obtain

1 _n+w? —5 | _ratm?
lim (Ig +Ig) :/ Ze AMkajz dx—i—/ Ze Mkajz g,
e—0t s

. (5.3)

Making the change of variables 2 — —z in the second integral, we see that (5.3) becomes

00 | _mletw? 00 | _ne—p? 00 | _m(exlup?
/ Ze Mkajz . / Ze Mkajz . — sgn(,u) Z ;I:/ Ze AMkajz o m
s T s T T s T

5.2. Asymptotics for Z(u, k; z). The main result in this subsection is the following approximation
of Z(u, k; z).

Proposition 5.2. If 1 <k < N and |P| < ﬁ, then for 0 < 0 < ‘—g‘ we have, for some ¢ > 0
2,/Mka; 31203 2
T(p by z) = - Y92 4 0 k2o + 1+M—|—log VY =2 re(2) )
w3 k|z| )

Before proving Proposition 5.2, we approximate the third term from Lemma 5.1. We set A :=
il
AMka

R and make the change of variables = — |u|x to obtain that the third term in Lemma 5.1
equals

oo | .
sgn(,u)zzﬂ:/(s S R gy
n 5

5.4

! (54)
[

We split the integral at = = % To approximate the contribution from z > 1, we define for d € Ny

Ji+ =C - . /OO ie_lélm(xilydm

x4 ’
where

(5.5)
d—1)! ifd>1
0= @D ifd=1,
1 itd=0.
Note that J; 4 is the contribution from = > 1 to the integral in (5.4). The following trivial bound

for J;+ follows immediately by bringing the absolute value inside the integral.
Lemma 5.3. For d € Ny, we have

To obtain a better approximation for J; +, we next relate Jg + with Jg41 + and Jg—1 +.
Lemma 5.4. For d € N, we have

d
Z Alz] (1 2 Z
= (—@d-1 (- ) e () d—1,1)——TJq 1+ |-
jd,:t + ( ( ) <A|Z|> € 2 +\7d+17:|: +max( ) )2A|Z|jd 1,+
Proof. We first rewrite

C C
jd,:t:jdj:i—di d
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Using integration by parts, the first two terms in (5.6) equal

+0y [ ——— o /OO i(gn + 1)6_Am(xil)2dx =40y (- de_A‘z‘ (31)° T

Plugging back into (5.6) and using Cy = (d — 1)! and C(jil = max(d — 1,1) yields the claim. O
We also require an approximation for J +.
Lemma 5.5. There exists ¢ > 0 such that
A A —cA\z\Re(%)
TA|z| Lo VAe

z |z| Re (%)

Jo+ = 2041=1

Proof. We first make the change of variables x — x F 1 in (5.5) to obtain that

24z [ _Alzl o
j()’j: — | | e P xr d:E
141

z

For +£1 = —1, we rewrite this as

Jo,— = 24]z] </ e~ dy —/ e_ATZIQd:E>

2

z
_ _2‘42‘2’/ A o) (Aﬁ e—Allee(i)x2d:c>.
. .

Jow =201 2B [T 2y o (4 / AlRe(D)ay |
z 1+1

—0o0

-

Hence we have

Noting that Re() > 0, we then bound
— LAzl Re( L
1£3

2,/ Alz|Re (1) ‘

o0
/ e_%ﬁda:: % O
z

—00

The claim follows, evaluating

We next combine Lemmas 5.4 and 5.5 to obtain an approximation for J; +. To compare the
asymptotic growth of different terms, we note that by (3.4) and the fact that k < N

Re (1 1 1
e}fz) _ > L (5.7)
kN /o + @2 V2
;2 21 2\?

Lemma 5.6. If 1 <k < N and |®| < &, then we have

o Tz -3 —cA|z|Re(l)
= _ - A z X
T+ = 041=—1 y1E +0 < 2 te )
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Proof. By Lemma 5.4 with d = 1, we have

z
T, =:F<— e

We then plug in Lemma 5.4 again twice (once with d = 2 and then once with d = 1) to obtain that

s=o( (e (40 ()

-4 (Y

+‘72’i+2A| |j0i>

A (1)

CB

F I3+

2
z z
gt <2A|z| +(zam) ) ‘7°’*>'
The first term can be bounded against

o <<% n %) e—cA|z|Re(1)> _0 (%6—0A|2|Re(i)> ’

using that A > 1 by (5.8). Moreover, by Lemma 5.3, we have

A—2
RLA N S
’ | Alz|Re (1)

| T3,+] ,

For the terms with Jp +1, we use Lemma 5.5 to approximate these by

5 e—cA|z|Re(%)
For1=—14/ 1 +0 A7 4+ ———
| | Alz|Re ()

Noting that F041—_1 = d41—_1, this gives

—2
T+ =0x1=—14/ > I o4+ % + __ e—cAlzRe(2) AT
’ | Alz|Re (1) Alz|Re (1)

We then use (5.7) and the trivial bound |z| Re(1) < 1 to compare the O-terms, obtaining

L —= <K 1.
Alz| Re (%)

< A_% and
Alz| Re (%)

| =

This gives the claim. O
We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. The first term in Lemma 5.1 yields the second error term in Proposition
5.2. For the second term in Lemma 5.1, we note that

_nly+w)? Re(1) 77(y+u)2 1
_ iMkaj . Im( =
Ry(y) =e Cos ( IMka, m| ~

_7r(§U+H)2 Re 1 . ﬂ.(y + ,U)2 1
Ig(y) =e¢ AMka (z) sin (_ 4Mkaj Im<;>>
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and then explicitly take the derivatives and bound |Re(z)| < |z|, [Im(z)| < |z|, and the absolute
value of the sines and cosines that occur against 1. This yields

_ 7(yy, o) (

/ -7/ 4]\/Ika

=

).

To bound the right-hand side, we use yp, < 0 < ‘—g‘ to conclude that ‘—g‘ < lyez +pl < %

Noting that Re(%) > 0 yields that the second term in Lemma 5.1 contributes the third error term
in Proposition 5.2. We rewrite the third term in Lemma 5.1 as in (5.4) and split the integral in

(5.4) at 1 For ‘i‘ <z < 35, we bring the absolute value inside and note that for z < % we have

|lx 1] > % to bound

1 1
/2 l(3_¥(”“E1)20l33 < e_%Re( )/2 ld:n < <1 —|—log< >> — 7 Re(
s e 7

Tul Tul

w =
w =

). (5.9)
We next turn to the contribution from x > % By Lemma 5.6, we have

sgn + T+ = —sgn(p +0 A_%—l—e_CAMRe(%) . 5.10
(1) 3 71 = = senie) |4+ O ) (5.10)

As noted below (5.5), Ji1+ is precisely the contribution from z > % to the integral in (5.4).
Therefore, combining (5.10) with (5.9) yields

sgn(p Z /H S M EE gy — _gen(p )m+0 <A‘3 + <1+log (,i)) e‘“"Z'RC(i)) :

Plugging in A = 3 Mk | I gives that this equals

2V MkagE <k’2‘§2 - <1+10g (, ’>> c”szO(l)> ,
7

7

where the value of ¢ is changed from the previous line. These correspond to the main term and the
first, second, and fourth error terms in Proposition 5.2. O

We directly obtain the following corollary by choosing § := p in Proposition 5.2.

Corollary 5.7. We have, for some ¢ >0

3 3
2 k2|z|2 2\ _en® go(t
(M? 72) M]CO[j,Zlu + < |M|3 + 0og <k7|Z| e k

5.3. Summing Z(u, k; z). We next approximate the sum over v in the second term of Lemma 4.2.
Lemma 5.8. There exists ¢ > 0 such that for all 0 < k < N and £ € Ly, we have

Z ZI (L £2Mkv, k; z) = \/jcot(QMk)—l-O <k§|||7>—|—0 (log(k‘|z|) 2Re(l)> (5.11)

v>0

( |§|z|+log(k‘z,)e—%aee>> (5.12)
_ <%) (5.13)
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Remark. Note that the first term on the right-hand side of (5.11) is always finite because 1 — Mk <
¢ < Mk with £ # 0 implies that the parameter is never an integer multiple of .
Proof of Lemma 5.8. Plugging Corollary 5.7 with u = ¢ + 2M kv into the left-hand side of Lemma

5.8 and using
1
meot(ma) = hm ( —i—Z( n >>,
x n x—mn

the main term in (5.11) becomes the claimed main term.

To obtain (5.11), we are left to bound the error terms. Note that since 1 — Mk < ¢ < ME (with
¢ # 0), we have % > 2. We conclude that since ]%V —1] >2v—1> v for v > 1, the sum of
the first O-term in Corollary 5.7 is

1
> Z|€12Mku| Supt msz 3 |e|3’

v>0

yielding the first error-term in the lemma. For the final error-term, we write

2 . )2
Z Zl <|€iz‘Mku| >e_ (2Mk)? (1)
Z

v>0

— g (k|2]) Z Ze c(l:l:21v1kz/) Re(1) +22 Zlog 10+ 2ME]) e c(eiszu) Re(%) (5.14)

v>0 v>0
Since 1 — Mk < ¢ < Mk, we have d := |{ + 2Mkv| > |{| for every v and the terms in all sums in
(5.14) are non-negative. Hence we may bound (5 14) against a constant multiple of

2 a2
e e Re(L )log (k|z|) Z e 2f + e~ 9F Re(3) Zlog(d)e_%/?.
d>[| d>|¢|

Each of the sums is absolutely convergent and may be bounded by the sum with |¢| = 1, giving a
uniform bound independent of £. The first term is dominant because log(k|z|) > 1, yielding (5.11).
The approximation (5.12) follows by showing that

k3|22 ol | o (70| o VAT
|3 7 k 2Mk 2
Finally (5.13) follows by (5.7), (5.8), and (5.12). O

6. PROOF OF THEOREM 1.1

6.1. Kloosterman’s Fundamental Lemma. To describe Kloosterman’s Fundamental Lemma [7,
Lemma 6], we note that for each 0 < h < k with ged(h, k) = 1, there exists a unique o(h) = gr(h)
with 0 < o(h) < k for which

h(N + o(h)) = —1 (mod k).

Lemma 6.1. For anyv € Z*, k€N, 0 < o < k, and n € Z, we have

) 4
S T [[e@Magh,vk)| =0 <k2+%+€ ged(n, k:)i) .
0<h<k Jj=1
ged(h,k)=1
o(h)<e
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Here the O-constants is absolute (and in particular independent of v and o).
One obtains the value of o(h) by (3.1) and (3.3).
Lemma 6.2. We have
o(h) = o1 (h).

6.2. Setting up the Circle Method. Fix J C {1,2,3,4} and write F(q) := Fy m,a,7(q). By
Cauchy’s Theorem, we have

1 [ F(q)
27.” c qn—l—l

where C is an arbitrary path inside the unit circle that loops around zero in the counterclockwise

c(n) = ¢ M0 (n) =

27
direction. We choose the circle with radius e” ¥ with N := |y/n| and the parametrization ¢ =
27 :
e~ N2 T2 with 0 <t < 1. Thus

1
_27m . 27rn_
c(n) = / F (e NZ +27m’) e At gy
0

Decomposing the path of integration along the Farey arcs —79;% <SP < 79;;7 p With @ =1 — %,

1

%
2mwinh h,k 27 . 2mnz
cm)= Y e_k/ F(eT(’“ﬂz))e Fodd, (6.1)
0<h<k<N Ok
ged(h,k)=1

where z = k(5> — i®) as above. Since for J = {1,2,3,4} we may use Lemma 2.4, we consider the
case that J # {1,2,3,4}. For 1 </ <4, v e N§, X € L},,, and € € {£}", set
W}g_l if £ € J,
if ¢ ¢ J and vy # 0,

IV,)\,E,Z(z) = IV,A,S,Z,M,k(z) = 2Mk 1
Z ZI (A £ 2Mkv,k;z) if £ ¢ J and vy = 0,
v>0
dy e = €V + Oyy=00pg g Ae-
By Lemmas 4.1 and 4.2, we have
_ 4
16M2F <e%<h+w>> H &G (6.2)

2

TZT 2

7\'1/

4 mir
"Mk 1%
= 2 ]2 Z Z Z H w6k G(2Majh 2rajh +dy e ji k) Zuae,j(2)-
Wz veNS AeL},, ec{£}*i=1

Plugging (6.2) back into (6.1), we see that the contribution to c¢(n) from the term v € Nj is
1 .
times

1
16M2 ], /@5 o>j=15v;=0

27'r7,nh

e T
I,(n) =1, Mm0(n) = Z T Z Z Heaﬂ ME G(ZMozjh 2roih + dy ae i k)

0<h<k<N xeLd ee{£} =1
ged (hk)=1 M
Dk 1 2”( i ) > e
vk L ndaord i) 2= ore—
y / e 2 287 22j=1% J=1 AMkajz HIV,A,s,j(Z)d(I)'
A

h,k 7=1
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6.3. Bounding EueNg\{o} I,(n). The following lemma proves useful for bounding the sum of
I,(n) with v # 0.

Lemma 6.3. Suppose that 0 < 01 < g9 < 00, ¢ > 0, and for each 0 < k < N let a subset
Ay, € Z4\ {0} be given. Then, with ||v||? == d1<j<a 1/]2,

kN+e _Cuzﬁ
> EX T lg 3 [0 e

0<k<N veAg XeLd,, 7= T ec{x}to=01 k(N+g+1)

4
<| 3" e T [[ G2Majh, 200 £ dyx e ji k)| < nre e

0<h<k j=1
ged(h,k)=1
o(h)<e

Proof. We first use Lemma 6.1 and the fact that

1
> 1 < log(h) < k°. (6.3)
€Lk

Uniformly bounding against the cases 91 = 0 and g2 = oo in the lemma, the left-hand side of the
lemma may be bounded against

1
< 3 k5 ged(n k)i Z/”LQ el

0<k<N vEA,

Regg)

d®, (6.4)

By assumption, for every v € A we have ||| > 1 and using (5.7) we obtain that (6.4) may be
bounded against

+e |I/||2 ﬁ 1 _QRC(%)
< Z s ged(n, k)% Ze Z—|26 27k dd. (6.5)

0<k<N vEAL |

It remains to show that (6.5) is O(n16+5) Since Ay C Z*\ {0}, we may bound the sum over v

uniformly by
Z e—illvIP < Z e ilMI? 1.
vEA, vezA\{0}

We then split the sum and integral in (6.5) into three pieces:

L

)SRID SR KA SRR Sl LA SRR D A

0<k<N1-¢ 0<k<N1—t" ENIFHL NI-t<k<N

for ¢ some (arbitrary small) number. We first consider ) ,. Plugging 0 < |®| < W into the
right-hand side of the equality in (5.7), we have

2%
Re <1> > Gl .
z 2
20

Combining this with the first inequality in (5.8), the contribution from 37, to (6.5) is O(e”57™).
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We next turn to > _,. Using the fact Re(1) > 0, we bound
1
N1
S, Y Hrwdmnt [T e
0<k<N'-¢ kNH‘f 2

One can show that the integral is O(%ﬂ), yielding ), < N SHste, Choosing ¢ sufficiently small
depending on €), we obtain = O(ni67). We finally turn to . We bound, choosing ¢ < 8¢
2 3

Zs < N? Z ko8t ged(n, k:)% arctan (%) < niete. O
N1-t<k<N
We next bound the contribution from the sum over all h, k of the terms v # 0 from (6.2).
Proposition 6.4. If J # {1,2,3,4}, then
Z* I,(n)=0 (n}_g%) .
veNg\{0}

Proof. Writing k + kj = N + g, j(h) as in (3.2), we split the integral in I,,(n) as

o 00 1
hk k(N+9k,2(h) . k(N+Q+1) k(N+o)
[y | S Lo s [ e

N+@k 1(1) o=ok,1(h) k(N+g) 0=0k,2(h) ” E(N+et1)

Interchanging the sums on h and g for the first sum in (6.6), its contribution to I, (n) equals

1 ; i — 1 2= r2 4 4 w3
Z — Z Z 6% Z?:l EjVj Z F(N+e+l) _eT (""'W Zj:l O‘j)z_zj':l IMkojz
k2 o1 22
0<k<N AeLs,, ec{£}* 0=0" " kE(N+o)
4 ) 4
27r1n )
< [[Zvacitz)de > [[ceMa;h,20;h + dyre k). (6.7)
] 0§h<k Jj=1
ged(h,k)=
9k,1(h)§9

Similarly, interchanging the sums over h and p in the second sum in (6.6) and then applying Lemma
3.1 yields a contribution to I, (n) of

00 1 2 Py
2r 4 4
Z i Z Z e‘rrzr J 15JV]Z kE(N+e) i67<n+;_MZj:1aj)z_zj=l e
k2 1 22
0<k<N — xeLj,, ec{x}* 0=0" B(N+o+1)
4 \ 4
27r17LL
< [[Zoacs(de > [1G@Mash, 20,k + dy e jsk) . (6.8)
j 0<h<k j=1
ged(h,k)=1
ok,1(k—h)<e

Making the change of variables h — k — h in the inner sum, the inner sum becomes

4
S e T[] G2Majh, 205k — dy s i k).
0§h<k§N j=1
ged(h,k)=

9k,1(h)Sg
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We then take the absolute value inside all of the sums except the sum on h in both (6.7) and (6.8).
Noting that |z|? and Re(l) are the same for ® and —®, we may make the change of variables
® — —® in (6.7) to bound both (6.7) and (6.8) against

2

< Z Z Z Z /k(N+Q) ﬁezkﬂ(n—i_;j{ Z?:1 aj> Re(z)—Z?zl %&Re(%)

0<k<N )\eﬁMk ec{£}* 0=0" k(N+eo+1)

X [Tunej(z)d®| S e FHGE@Majh,205h £ dyxe i k)|, (6.9)

0<h<k
ged(h,k)=1
ok,1(h)<o
where =+ is chosen as “+” for (6.7) and “—" for (6.8). We note that since Re(z) = % ~ %, we have
2
¢ (i Tl o) Reld) g (6.10)
We next bound |Z, ¢ j(2)|. In the case that j € J or v; # 0, we trivially bound (using \; € Lask)
1 1
Tore(z2) = ——— < —.
*ei8) = 1 < )
If both j ¢ J and v; = 0, then we use (5.13) to bound
5
’IV,A,E,J( )’ < (6’11)

[l

Hence, setting ¢ := Wj(k«jl)’ (6.9) may be bounded against

SIS OB | D Sl oF ATl

O<k§N xeLd,, J=1 sG{:I:}4Q 0 k(N+Q+1)

chf)

dd

’:]yp

27'r7,n
<2

0§h<k§N j=1
ged(h,k)=
Qk,l(h)SQ

G(@2Majh,2ah +dy xc ;i k)| -

By Lemma 6.2, we have o(h) = gx1(h). Summing over v € N§\ {O} we may therefore use Lemma
6.3 with Ay = N3\ {0}, 01 = 0, and g2 = 00 to conclude that Z (n) is O(n 16 +€) giving the

bound claimed in the proposition. O
6.4. Bounding Iy(n). This subsection is devoted to bounding Ig(n).
Proposition 6.5. If J # {1,2,3,4}, then

Ip(n) =0 (n%"’a) .

Proof. As in the proof of Proposition 6.4, we first split the sum as in (6.6) and interchange the
sums on h and g and then take the absolute value inside all of the sums other than the sum on h.
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Since J # {1,2,3,4}, without loss of generality we have 4 ¢ J. For 1 < j < 3, we use (6.11) and

we bound Zy x ¢.4(2z) with (5.12). Plugging in (6.10), we hence obtain
-

(— + log(k|z)

c)% Re(%)

)dq>

(6.12)

1 & [rvre 1
o
&€
<n Y EY [T E Yo
0=0 k(N+e+1) Aeﬁ;lwk

0<k<N
G(2Majh, 2a5h £ 6,4 705 k)

:u;

27r'Ln

2.

0§h<k

ﬁ 1
i I\
ged(h,k)=
9k,1(h)Sg

7=1
Plugging in Lemma 6.2, the contribution to Ig(n) from the first term in the O-constant in (6.12)

o~

(2Majh, 200h & 04 5 A js k)

is bounded by

PR I (]

1 T
@Z?ZHEJ
k> Aect,, j=1 ] RN ToTD |Z| O§h<k j=1
ged(h,k)=
g(h)Sg

Using Lemma 6.1 and (6.3), we can bound this against
k(N j
Z k8+€gcdnk% Z H Z/ B
0<k<N Aec‘}mg 1 (N+g+1) |
N AP
S kF T ged(n, k)2 / - (6.13)
0<k<N 0 [z]2
We Spht the 1ntegral in (6.13) into the ranges D < N2 and ® > +. Using that for ® > NQ, we
have ]2\ 2 > k3®2, the contribution from & > W to (6.13) may be bounded against
[ee]
ne > kT ged(n, k)3 / O 2dd <N Y k5t ged(n, k)3
0<k<N N2 0<k<N
3
%3, to obtain that the contribution from

we use the trivial bound |z]2 >

<« n°N Z k_%ﬁgcd(n,k)%
0<k<N

For 0 < & < #,
0<® < to (6.13) is

is O(ni6te).
We next consider the contribution to (6.12) coming from the second O-term. Using (5.8)
bound log(k|z|) < n®, the contribution to (6.12) from the second term in the O-constant is
1
—e

Therefore (6.13)
>3 [T e
E(N+ot1) | |

CY LY T,
ee{+}* 0=0

0<k<N )\eﬁ‘}wkj 1



REPRESENTATIONS OF INTEGERS AS SUMS OF FOUR POLYGONAL NUMBERS 21

i

x| ST T [ G@Majh 205k + 80 055 k) | < nTe
0§h<k j=1

god(h,k)=

Qk,l(h)SQ

using Lemma 6.3 with o1 = 0, 02 = 00, and A, = {(0 0 0 A\y)T : Ay € Ly} yields that this may be
bounded against O(n%ﬁ). O

6.5. Proof of Theorem 1.1. We are now ready to prove the main theorem.
Proof of Theorem 1.1. (1) We first use Lemma 2.3. If M is odd, then we use the fact that
T
®:M,a(7—) = @;_7",2M,a (Z) :

Thus we may assume without loss of generality that M is even. We deal with the terms from
Lemma 2.3 termwise for each J C {1,2,3,4}.
Plugging Propositions 6.4 and 6.5 into (6.2), we conclude that for J # {1,2,3,4} we have

%MAJW):O<n£%)'

Thus by Lemma 2.3, we have

Sr2M,a 2Mn + r? E a;
1<j<4

1
w@M“(%H)@%%)

Plugging in Lemma 2.4 (1) then yields

1, 15y
SroM,« 2Mn + r? Z o :ESMM@ 2Mn + r? Z Q; +O< 16 >
1<j<4 1<j<4

Since
SraM,a(n) = 3;,2M,a(n) =0
if n # r? Z?=1 a; (mod 2M), the claim follows.
(2) By Lemma 2.1, we have
Tm,a(n) = 7’7—;704(71) +0 (n%+€> )
Lemma 2.2 then yields

Tr—lr—L,a(n) = Sm,2(m—2),a 8(’171, - 2) n — Z aj | + m2 Z Qa;
1<j<4 1<j<4
Thus by part (1) and Lemma 2.4 we have
1, 15
T;rb,a(”) = 16 m2(m-2) 8(m—2) | n— Z o | + m? Z aj | +0 <n16+5)
1<j<4 1<j<4

:%¥%J)+O<‘§). O
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7. PROOF OF COROLLARY 1.2 AND COROLLARY 1.3

In this section, we prove Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. By Theorem 1.1 (2), we have

1 5
Toa(n) = Tgra(n) +0 (217, (7.1)
Completing the square in the special case & = (1,1,1,1), we obtain
T6.(1,1,1,1)(n) = 83 4. (1,1,1,1)(8n +4).

Note that by the change of variables z; — ¢;x; with € € {£}*, we have

S54,1,1,1,1) (8 +4) = 1—168127(171,171)(811 +4).
Cho [4, Example 3.3] computed
$19,01,1,1,1)(8n +4) =160(2n + 1).
Thus
r6.1.1,1,1)(n) =0o(2n+1).
Plugging this back into (7.1) yields the claim. O

We next prove Corollary 1.3.

Proof of Corollary 1.3. Using [4, Example 3.4], the argument is essentially identical to the proof of
Corollary 1.2, except that in this case it is not immediately obvious that the main term is always
positive. For this we use multiplicativity to bound

- 2 (2) d > ¢(8n+5)>n'"",
d|(8n+5)

where ¢ denotes the Euler totient function. O
We finally prove Corollary 1.4.

Proof of Corollary 1.4. By Theorem 1.1 (2), we have
1

* 15
75,1,1,1,1) (1) = ETS,(l,Ll,l)(n) +0 (n16+6> . (7.2)

Completing the square, we obtain
7"%.k,(1,1,1,1)(”) = 5;,6,(1,1,1,1)(24” +4). (7.3)

Using [13, Proposition 2.1], it is not hard to show that the generating function ©7 , (1,1,1,1) for
55.6,(1,1,1,1) 18 a modular form of weight two on I'p(144). We next claim that

% 2 1
O56,1,1,1,1)(T) = gE(47') + §774(247')a (7.4)
where
1
Br)= ), o, n(r) =3 [[(1-q").
=1 (mod 6) n>1
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For this we note first that 7 — 17*(247) is a cusp form of weight two on I'g(144). We next recall that
for a translation-invariant function f with Fourier expansion f(7) = >_ <4 c¢r(v;n)g", the quadratic
twist of f with a character x is given by

fex(r ZX n)cs(vin)g

n>0

For § € N, one also defines the V -operator and U -operator by

f|Vs(r) := ZCf (6v;n) ¢, f|Us(7) = ZCf (%;571) q"

n>0 n>0

A straightforward generalization of the proof for holomorphic modular forms (see [8, Proposition 17
(b) of Section 3] and [9, Lemma 1]) yields that if f satisfies weight k& € Z modularity on I'g(N) and
X is a character with modulus M, then f ® y satisfies weight & modularity on T'g(lem (N, M?)) with
character x2, f|Us satisfies weight & modularity on Fo(lcm(m, J)), and f|Vj satisfies weight k
modularity on I'g(6N). Recall the weight two Eisenstein series

BEy(r _1—242

n>1

and set xp(n) := (£). We see that

E=—— (B,®x_3+E®x%3) | (1—UsVa).

"l

Letting E (1) := Ea(7) — % be the completed weight two Eisenstein series, we easily conclude

1
B=-—— (E2®x N 3> (1 UsVa).
Since Es is modular of weight two on SLa(Z), we see that E is modular of weight two on T'o(36).
Since it is holomorphic, we conclude that the right-hand side of (7.4) is a weight two modular
form on T'g(144). By the valence formula, (7.4) is true as long as it is true for the first 48 Fourier
coefficients, which is easily checked with a computer.

By work of Deligne [5], we know that the n-th coefficient of n*(247) is < nzte. Therefore,
writing the n-th coefficient of E as c¢g(n), we conclude from (7.4) that

2 2
S5.6,1,1,1,1)(24n +4) = ch(6n +1)+0 <n%+5) = 50(671 +1)+0 (n%Jra) .

Plugging back into (7.3) and then plugging this into (7.2) implies that

1

* 15 _5
T5,1,1,1,1)(n) = ET5,(1,1,1,1)(”) +0 (” 16+€> = 50(6” +1)+0 ( 16 ) . U
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