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REPRESENTATIONS OF INTEGERS AS SUMS OF FOUR POLYGONAL

NUMBERS AND PARTIAL THETA FUNCTIONS

KATHRIN BRINGMANN, MIN-JOO JANG, AND BEN KANE

1. Introduction and statement of results

The study of representations of integers as sums of polygonal numbers has a long and storied
history. For m ∈ N≥3 and ℓ ∈ N0, let pm(ℓ) be the ℓ-th m-gonal number

pm(ℓ) :=
1

2
(m− 2)ℓ2 − 1

2
(m− 4)ℓ,

which counts the number of points in a regular m-gon with side lengths ℓ. Fermat famously
conjectured in 1638 that every positive integer may be written as the sum of at most m m-gonal
numbers, or equivalently that for every n ∈ N0

∑

1≤j≤m

pm(ℓj) = n (1.1)

is solvable. Lagrange proved the four-squares theorem in 1770, resolving the case m = 4 of Fermat’s
conjecture. The case m = 3 of triangular numbers was solved by Gauss in 1796 and is sometimes
called the Eureka Theorem because Gauss famously marked in his diary “EYPHKA! num=△ +
△+△”. Cauchy [3] finally completed the full proof of the conjecture in 1813, and Nathanson [11]
shortened Cauchy’s proof in 1987; he also provided some additional history.

More generally, given α ∈ Nd (throughout we write vectors in bold letters) and n ∈ N one may
consider Diophantine equations of the type

∑

1≤j≤d

αjpm (ℓj) = n. (1.2)

It is natural to ask for a classification of those n ∈ N for which (1.2) is solvable with ℓ ∈ Nd
0. The

case m = 4 is well-understood: by applying the theory of modular forms (see [20, Proposition 11]),
for m = 4 one not only knows the existence of a solution to (1.1) but has a precise formula for the
number of such solutions. Namely, Jacobi showed in 1834 (see e.g. [19, p. 119]) that

#



ℓ ∈ Z4 :

∑

1≤j≤4

ℓ2j = n



 = 8

∑

4∤d|n
d. (1.3)

Although formulas like (1.3) are rare, they are often “almost true” in the sense that the number of
solutions to equations like (1.2) with ℓ ∈ Zd may be written in the shape of (1.3) up to an error
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term. For example, in the case α = 1 with arbitrary even d and m = 4, Ramanujan stated [12,
(146)] a formula for the number of solutions to (1.2) which was later proven by Mordell [10]. Set

r2k(n) := #



ℓ ∈ Z2k :

∑

1≤j≤2k

ℓ2j = n





and suppose for simplicity that k ≥ 10 is even. Ramanujan’s claim [12, (146)] together with [12,
(143)] implies that there exists δ > 0 such that for n ∈ N

r2k(n) =
2k(−1)n+1

(2k − 1)Bk

∑

d|n
(−1)d+

n
d

k
2 dk−1 +O

(
nk−1−δ

)
, (1.4)

where Bk is the k-th Bernoulli number. More generally, Kloosterman [7, (I.3I)] applied the Circle
Method to show formulas resembling (1.4) (where the main term is the singular series from the
Circle Method) in the case m = 4 and d = 4 of (1.2).

The goal of this paper is to obtain formulas resembling (1.4) for the number of solutions

rm,α(n) := #



ℓ ∈ Nd

0 :
∑

1≤j≤d

αjpm (ℓj) = n



 .

Note that in (1.3) and (1.4), we are counting solutions with ℓj ∈ Z, while the goal in this paper is
to restrict to solutions with ℓj ∈ N0. The reason for this restriction is the connection with regular
polygons. Although the formula defining pm(ℓj) is still well-defined for ℓj ∈ Z, their interpretation
as the number of points in a regular m-gon with side lengths ℓj is lost when ℓj < 0 because side-
lengths cannot be negative. For m ∈ {3, 4}, the restriction ℓj ∈ N0 does not lead to a fundamentally
different question than taking ℓj ∈ Z. Indeed, using that p3(−ℓ− 1) = p3(ℓ), we obtain for m = 3 a
bijection between solutions with ℓj ≥ 0 and those with ℓj < 0. Similarly, since p4(−ℓ) = p4(ℓ), we
have for m = 4 a bijection between solutions with ℓj ≥ 0 and those with ℓj ≤ 0. The case ℓj = 0 is
double-counted, but formulas for solutions with ℓj = 0 may be obtained by taking d 7→ d − 1 and
removing αj in (1.2). Thus for m ∈ {3, 4}, finding the number of solutions to (1.2) with ℓj ∈ N0 is
equivalent to finding the number of solutions with ℓj ∈ Z, and we hence assume m ≥ 5 throughout.
To the best of our knowledge, in this case formulas like (1.4) for the number of solutions to (1.2)
if ℓ ∈ Nd

0 are not known. However, standard techniques yield formulas of this type for ℓ ∈ Zd.
Completing the square in (1.2), solutions to (1.2) are in one-to-one correspondence with solutions
to certain sums of squares with fixed congruence conditions. Using this relationship, one finds that
studying

r∗m,α(n) := #



x ∈ Zd :

∑

1≤j≤d

αjpm(xj) = n





is equivalent to evaluating s∗r,M,α(An+B) (for some appropriate A, B, r, and M), where

s∗r,M,α(n) := #



x ∈ Zd :

∑

1≤j≤d

αjx
2
j = n, xj ≡ r (mod M)



 .

The generating function (q := e2πiτ with τ ∈ H := {τ ∈ C : Im (τ) > 0})

Θ∗
r,M,α(τ) :=

∑

n≥0

s∗r,M,α(n)q
n
M
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is a modular form of weight d
2 for some congruence subgroup (see, e.g., [13, Proposition 2.1]).

Using the theory of modular forms, formulas like (1.4) may be obtained by splitting Θ∗
r,M,α into

an Eisenstein series and a cusp form and using a result of Deligne [5] to bound the coefficients
of the cusp form as an error term. As noted above, although one obtains formulas like (1.4) for
r∗m,α(n) due to its connection with modular forms, one loses the interpretation for pm(ℓj) in terms
of regular m-gons. The aim of this paper is to link the study of rm,α(n) to modular forms while
simultaneously preserving the connection with regular m-gons by restricting to ℓj ∈ N0.

However, the restriction of ℓj to N0 breaks an important symmetry and as a result the generating
function for rm,α(n) is unfortunately not a modular form, so one cannot employ standard methods
to obtain a formula for rm,α(n). Indeed, in his last letter to Hardy in 1920, Ramanujan commented
that “unlike the ‘False’ theta functions”, the mock theta functions that he discovered “enter into
mathematics as beautifully as the ordinary theta functions”. However, contrary to Ramanujan’s
claims about the false theta functions, recent work by Nazaroglu and the first author [2] shows
that the generating function has some modular properties and in particular can be “completed”
to a function transforming like a modular form. This gives that the generating function has some
explicit “obstruction to modularity”. The investigation of this obstruction to modularity plays a
fundamental role in this paper and causes most of the technical difficulties.

Given the results in [2], one approach to obtaining formulas like (1.4) would be to establish
structure theorems or generalizing results on modular forms to extend to functions with this type
of obstruction to modularity. In this paper, we instead link the rm,α(n) and r

∗
m,α(n), showing that

they are essentially equal up to an error term. As above, by completing the square, one finds that
this is equivalent to relating s∗r,M,α(An+B) to sr,M,α,C(An +B) (for some A,B,C), where

sr,M,α,C(n) := #



x ∈ Zd :

∑

1≤j≤d

αjx
2
j = n, xj ≡ r (mod M), xj ≥ C



 .

If C = 1 (i.e., if x ∈ Nd), then we omit it in the notation. Heuristically, one would expect that
solutions with εjxj > 0 are equally distributed independent of the choice of εj ∈ {±1}. Our main
theorem shows that this is indeed the case.

Theorem 1.1. Let α ∈ N4 and r,M ∈ N be given.

(1) We have

sr,M,α(n) =
1

16
s∗r,M,α(n) +O

(
n

15
16

+ε
)
.

(2) For m > 4 we have

rm,α(n) =
1

16
r∗m,α(n) +O

(
n

15
16

+ε
)
.

Remark. The main term of s∗r,M,α(n) comes from the Eisenstein component of Θ∗
r,M,α. The com-

putation of the corresponding Eisenstein series appears throughout the literature in a variety of
different shapes. In one direction, Kloosterman [7] computed this component as the singular series
coming from the Circle Method. On the other hand, the corresponding Eisenstein series appears
in the work of Siegel [15, 16] and follow-up work of Weil [18], van der Blij [17], and Shimura [14]
in two different forms. Firstly, the Eisenstein series may be realized as a certain weighted average
of the solutions over the genus of the given sum of squares with congruence conditions. Secondly,
Siegel computed its coefficients as certain p-adic limits. Finally, since the space of modular forms
of a given weight and congruence subgroup is a finite-dimensional vector space, one may explicitly
construct a basis and determine the Eisenstein series component using Linear Algebra.
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As noted above, combining Theorem 1.1 with known techniques from the theory of modular forms
yields formulas resembling (1.4). As a first corollary, we obtain such a formula for the number of
representations of n as a sum of four hexagonal numbers; the main term is given in terms of the
sum of divisors function σ(n) :=

∑
d|n d.

Corollary 1.2. We have

r6,(1,1,1,1)(n) =
1

16
σ(2n + 1) +O

(
n

15
16

+ε
)
.

Remark. Since σ(2n+1) ≥ 2n+1, Corollary 1.2 implies that r6,α(n) > 0 for n sufficiently large. Guy
[6] proposed a study of the numbers which are not the sum of four polygonal numbers. Moreover,
Corollary 1.2 implies that the number of such solutions is ≫ n.

Another example is given by sums of five hexagonal numbers where the last hexagonal number
is repeated at least twice. To state the result, let ( ··) be the generalized Legendre symbol.

Corollary 1.3. For α = (1, 1, 1, 2) and m = 6, we have

r6,α(n) = − 1

64

∑

d|(8n+5)

(
8

d

)
d+O

(
n

15
16

+ε
)
.

In particular, for n sufficiently large
r6,α(n) > 0.

The proofs of Corollaries 1.2 and 1.3 rely on formulas of Cho [4] which use the fact that Θ∗
−1,4,α

is an Eisenstein series in the cases α = (1, 1, 1, 1) and α = (1, 1, 1, 2); indeed, as pointed out by Cho
in [4, Examples 3.3 and 3.4], the space of modular forms containing them is spanned by Eisenstein
series in these cases. However, to obtain similar corollaries from Theorem 1.1, we do not require
the corresponding theta function to be an Eisenstein series. In order to exhibit how to use Theorem
1.1, we give one such example.

Corollary 1.4. For α = (1, 1, 1, 1) and m = 5, we have

r5,(1,1,1,1)(n) =
1

24
σ(6n + 1) +O

(
n

15
16

+ε
)
.

The paper is organized as follows. In Section 2, we connect sums of squares and polygonal
numbers, introduce partial theta functions, and relate them to theta functions and false theta
functions. In Section 3, we recall some facts about Farey fractions that are used for the Circle
Method. In Section 4, we give modular transformation properties of the theta functions and the
false theta functions in a shape that is useful for our application of the Circle Method. Section 5 is
devoted to studying the obstruction to modularity of the false theta functions and bounding them
in a suitable way to use in the Circle Method. In Section 6, we apply the Circle Method to prove
Theorem 1.1. Finally, we prove Corollaries 1.2, 1.3, and 1.4 in Section 7 to demonstrate how to
apply Theorem 1.1 to obtain identities resembling (1.4).

2. Sums of squares with congruence conditions and polygonal numbers

In this section, we relate sums of polygonal numbers and sums of squares and give a relationship
between sr,M,α and s∗r,M,α. Without loss of generality, we pick the ordering αj ≥ αj+1 for j ∈
{1, 2, 3} in (1.2). As noted in the introduction, we investigate sums of polygonal numbers via a
connection with sums of squares satisfying certain congruence conditions. Writing

pm(ℓ) =
1

2
(m− 2)

(
ℓ− m− 4

2(m− 2)

)2

− (m− 4)2

8(m− 2)
, (2.1)
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one sees directly that

rm,α(n) = s−(m−4),2(m−2),α,−(m−4)


8(m− 2)n +

∑

1≤j≤4

αj(m− 4)2


 .

Using (2.1), we have the generating function

∑

n≥0

rm,α(n)q
n =

∑

ℓ∈N4
0

q
∑4

j=1 αjpm(ℓj) = q
−

∑4
j=1 αj

(m−4)2

8(m−2)

4∏

j=1

∑

ℓ∈N0

q
αj

m−2
2

(

ℓ− m−4
2(m−2)

)2

.

We restrict our investigation of solutions to (1.2) to the case d = 4 and ℓ ∈ N4
0. We claim that

most of the solutions to (1.2) come from solutions with ℓj 6= 0, i.e., sums of precisely four polygonal
numbers instead of at most four polygonal numbers. Defining r+m,α(n) via the generating function

∑

n≥0

r+m,α(n)q
n :=

∑

ℓ∈N4

q
∑4

j=1 αjpm(ℓj) = q
−

∑4
j=1 αj

(m−4)2

8(m−2)

4∏

j=1

∑

ℓ∈N
q
αj

m−2
2

(

ℓ− m−4
2(m−2)

)2

, (2.2)

a direct calculation using [1, Lemma 4.1(a)] shows the following.

Lemma 2.1. For α ∈ N4, we have

rm,α(n) = r+m,α(n) +O
(
n

1
2
+ε
)
.

Define the partial theta function

Θ+
r,M,α(τ) :=

∑

n≥0

sr,M,α(n)q
n
M ,

which is closely related to the generating function of r+m,α(n) by (2.2).

Lemma 2.2. For m ≥ 5 and α ∈ N4, we have

∑

n≥0

r+m,α(n)q
n = q

−∑4
j=1 αj

(m−4)2

8(m−2)Θ+
m,2(m−2),α

(τ
4

)
.

By Lemma 2.2 and Lemma 2.1, to prove Theorem 1.1 it suffices to approximate the Fourier
coefficients of Θ+

r,M,α(τ). These functions Θ+
r,M,α are closely related to the usual (unary) theta

functions ϑ(r,M ; τ) and false theta functions Fr,M (τ), defined for 0 ≤ r ≤M − 1, M ∈ N by

Fr,M (τ) :=
∑

ν≡r (mod 2M )

sgn(ν)q
ν2

4M , ϑ(r,M ; τ) :=
∑

ν≡r (mod M)

q
ν2

2M . (2.3)

A direct calculation shows the following.

Lemma 2.3. For M ∈ N, 0 < r < 2M , and α ∈ N4, we have

Θ+
r,2M,α(τ) =

1

16

∑

J⊆{1,2,3,4}

∏

j∈J
ϑ (r, 2M ; 2αjτ)

∏

ℓ∈{1,2,3,4}\J
Fr,M (2αℓτ) .

By Lemmas 2.2 and 2.3, for J ⊆ {1, 2, 3, 4} it is natural to define

Fr,M,α,J(q) := q−
r2

2M

∑4
j=1 αj

∏

j∈J
ϑ (r, 2M ; 2αjτ)

∏

ℓ/∈J
Fr,M (2αℓτ) ,
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where hereafter ℓ /∈ J means ℓ ∈ {1, 2, 3, 4} \ J . Then for each J ⊆ {1, . . . , 4} we set

Fr,M,α,J(q) =:
∑

n≥0

cr,M,α,J(n)q
n.

If J = {1, 2, 3, 4}, then we omit J in the notation. A straightforward calculation yields the following.

Lemma 2.4.

(1) For M ∈ N, 0 < r < 2M , and α ∈ N4, we have

Fr,M,α(q) = q−
r2

2M

∑4
j=1 αjΘ∗

r,2M,α(τ).

In particular, for every n ∈ N0

cr,M,α(n) = s∗r,2M,α


2Mn+ r2

∑

1≤j≤4

αj


 .

(2) For m ≥ 5 and α ∈ N4, we have

cm,m−2,α


4


n−

∑

1≤j≤4

αj




 = r∗m,α(n).

3. Basic facts on Farey fractions

The Farey sequence of order N ∈ N is the sequence of reduced fractions in [0, 1) whose denomi-

nator does not exceed N . If h
k ,

h1
k1

are adjacent elements in the Farey sequence then their mediant

is h+h1
k+k1

. When computing mediants below, we consider N−1
N to be adjacent to 0

1 and take the

mediant between N−1
N and 1

1 . The Farey sequence of order N is then iteratively defined by placing
the mediant between two adjacent Farey fractions of order N−1 if the denominator of the mediant
in reduced terms is at most N . We see that two Farey fractions h1

k1
< h

k of order N are adjacent if
and only if the mediant in reduced terms has denominator larger than N . This implies that

hk1 − h1k = 1, (3.1)

and the converse is also true; if hk1 − h1k = 1, then h
k and h1

k1
are adjacent Farey fractions of order

max(k, k1). For three adjacent Farey fractions h1
k1
< h

k < h2
k2
, we set for j ∈ {1, 2} (note that kj

depends on h)

̺k,j(h) := k + kj −N. (3.2)

Since the mediant between adjacent terms has denominator larger than N and kj ≤ N , we have

1 ≤ ̺k,j(h) ≤ k. (3.3)

The following lemma is straightforward to prove.

Lemma 3.1. If h
k < h2

k2
are adjacent Farey fractions of order N , then 1 − h2

k2
< 1 − h

k are also
adjacent Farey fractions of order N and

̺k,2(h) = ̺k,1(k − h).
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For n ∈ N, set N := ⌊√n⌋ and define arcs along the circle of radius e−
2π
N2 through e2πiτ with

τ = h
k +

iz
k ∈ H. Note that τ ∈ H is equivalent to Re(z) > 0. Specifically, we choose Farey fractions

h
k of order N with 0 6 h < k 6 N and gcd(h, k) = 1 and set z := k( 1

N2 −iΦ) with −ϑ′h,k 6 Φ 6 ϑ
′′
h,k.

Here, for adjacent Farey fractions h1
k1
< h

k <
h2
k2

in the Farey sequence of order N , set

ϑ′h,k :=
1

k(k + k1)
, ϑ

′′
h,k :=

1

k(k + k2)
.

By (3.3), we have

|Φ| ≤ max
{
ϑ

′
h,k, ϑ

′′
h,k

}
<

1

kN
. j ∈ {1, 2}. (3.4)

4. Modular Transformations

Kloosterman’s version of the Circle Method [7] plays a fundamental role in the proof of Theorem
1.1. In order to integrate along arcs from −ϑ′h,k to ϑ′′h,k, one requires the asymptotic behaviour of

Fr,M,α,J(τ) near h
k . Transformation properties relating the cusp h

k to i∞ thus play a pivotal role

in determining the asymptotic growth near the cusp h
k . To state these, for a, b ∈ Z, c ∈ N define

the Gauss sum

G(a, b; c) :=
∑

ℓ (mod c)

e
2πi
c (aℓ2+bℓ).

4.1. The theta functions. We use the following modular transformation properties.

Lemma 4.1. We have

ϑ

(
r, 2M ; 2αj

(
h

k
+
iz

k

))
=

e
πiαjhr

2

Mk

2
√
Mkαjz

∑

ν∈Z
e
− πν2

4Mkαjz
+πirν

Mk G(2Mαjh, 2rαjh+ ν; k).

Proof. Writing ν = r + 2Mα+ 2Mkℓ with α (mod k) and ℓ ∈ Z in definition (2.3), we obtain

ϑ

(
r, 2M ; 2αj

(
h

k
+
iz

k

))
=

∑

α (mod k)

e
2πiαjh

2Mk
(r+2Mα)2

∑

ℓ∈Z
e

2πiαj
2Mk

(r+2Mα+2Mkℓ)2iz.

Using the modular inversion formula (see [13, (2.4)])

ϑ

(
r,M ;−1

τ

)
=M− 1

2 (−iτ) 1
2

∑

k (mod M)

e
2πirk
M ϑ(k,M ; τ)

on the inner sum, the claim easily follows. �

4.2. The false theta functions. We next establish analogous modular properties for the false
theta functions. For µ ∈ Z \ {0} set

I(µ, k; z) = IM,αj
(µ, k; z) := lim

ε→0+

∫ ∞

−∞

e
− πx2

4Mkαjz

x− (1 + iε)µ
dx. (4.1)

Throughout we write
∑∗

ν≥0 for the sum where the ν = 0 term is counted with a factor 1
2 and

moreover abbreviate
∑∗

ν∈N4
0

:=

4∏

j=1

∑∗

νj≥0

.
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For d ∈ N, set

Ld := [1− d,−1] ∪ [1, d].

Lemma 4.2. We have

Fr,M

(
2αj

(
h

k
+
iz

k

))
=

1

2
√
Mkαjz

e
πiαjhr

2

Mk

∑

ν∈Z
sgn(ν)e

− πν2

4Mkαjz
+πirν

Mk G(2Mαjh, 2αjhr + ν; k)

+
ie

πiαjhr
2

Mk

2
√
Mkαjzπ

∑

ℓ∈LMk

∑∗

ν≥0

∑

±
e

πirℓ
Mk G(2Mαjh, 2αjh+ ℓ; k)I(ℓ± 2Mkν, k; z).

Proof. We have, writing ν = r + 2Mα+ 2Mkℓ (0 ≤ α ≤ k − 1, ℓ ∈ Z)

Fr,M

(
2αj

(
h

k
+
iz

k

))
=

k−1∑

α=0

e
πiαjh

Mk
(r+2Mα)2Fr+2Mα,Mk(2αj iz).

Choosing the +-sign in [2, two displayed formulas after (4.5)] implies that

Fβ,M

(
−1

τ

)
− τ

1
2

M−1∑

r=1

ψβ,r

(
0 −1
1 0

)
Fr,M (τ) =

√
2M

∫ − 1
τ
+i∞+ε

0

fβ,M(z)√
i
(
z+ 1

τ

)dz,

where

fr,M(τ) :=
1

2M

∑

ν≡r (mod 2M)

νq
ν2

4M , ψβ,r

(
0 −1
1 0

)
:= e−

3πi
4

√
2

M
sin

(
πβr

M

)
.

Changing τ 7→ − 1
τ , and using

F0,M (τ) = FM,M (τ) = 0, F2M−r,M (τ) = −Fr,M(τ),

∑

β (mod 2M)

e
2πi
2M

(ℓ+r)β =

{
0 if r 6≡ −ℓ (mod 2M ),

2M if r ≡ −ℓ (mod 2M ),

we obtain, after a short calculation

Fℓ,M

(
−1

τ

)
= e

πi
4

√
− τ

2M

∑

β (mod 2M)

e
2πiℓβ
2M Fβ,M (τ)

+ e−
3πi
4
√
−τ

∑

β (mod 2M)

e
2πiℓβ
2M

∫ τ+i∞+ε

0

fβ,M(z)√
i(z − τ)

dz (4.2)

Thus

Fr+2Mα,Mk(2αj iz) =
e

πi
4

2
√
Mkαjiz

∑

β (mod 2Mk)

e
2πi(r+2Mα)β

2Mk Fβ,Mk

(
i

2αjz

)

+
e−

3πi
4

√
2αj iz

∑

β (mod 2Mk)

e
2πi(r+2Mα)β

2Mk

∫ i
2αjz

+i∞+ε

0

fβ,Mk(z)√
i
(
z− i

2αjz

)dz.

The first term can easily be rewritten, giving the first summand claimed in the lemma.
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In the second term of (4.2), f0,Mk = 0 and for β 6= 0 and τ = i
2αjz

we write the integral as

i

2M
lim
δ→0+

∑

ν≡β (mod 2M)

νe
πiν2τ
2M

∫ ∞−iε

iτ+δ

e−
πν2z
2M

√−z
dz.

We split up the integral in a way that allows δ = 0 to be directly plugged in termwise by Abel’s
Theorem. For this, we use [2, displayed formula after (3.4)] to obtain that

∫ ∞−iε

iτ+δ

e−
πr2z
2M

√−z
dz = − i

√
2M

ν

(
sgn(ν) + erf

(
iν

√
π

2M
(−iτ − δ)

))
.

We split the error function as

erf

(
iν

(√
π

2M
(−iτ − δ)

))
− ie

πν2

2M
(−iτ−δ)

√
2Mπν

√
−iτ − δ


+

ie
πν2

2M
(−iτ−δ)

√
2Mπν

√
−iτ − δ

. (4.3)

Plugging in the asymptotic expansion of the error function towards ∞ for the error function, one
finds that the series in ν of sgn(ν) plus the first term of (4.3) converges absolutely for δ ≥ 0, and
hence we may just take the limit δ → 0+. For the second term, we need to compute

lim
δ→0+

1√
−iτ − δ

∑

ν≡β (mod 2M)

e−
πν2δ
2M

ν
= lim

δ→0+

1√
−iτ − δ



∑

ν≥1

∑

±

e−
π

2M
(β±2Mν)2δ

β ± 2Mν
+
e−

πβ2

2M
δ

β


 .

Using the fact that
∑
±

1
β±2Mν = 2β

β2−4M2ν2
, the above series converges absolutely for δ ≥ 0 and hence

by Abel’s Theorem we have, for β 6= 0

∫ τ+i∞+ε

0

fβ,M(z)√
i(z− τ)

dz

=
1√
2M

∑∗

ν≥0

∑

±

(
sgn(β ± 2Mν) + erf

(
i(β ± 2Mν)

√
−πiτ
2M

))
e

πi
2M

(β±2Mν)2τ

+
1√
2M

(
sgn(β) + erf

(
iβ

√
−πiτ
2M

))
e

πi
2M

β2τ .

We now use the following identity from [2, (3.8)] (s ∈ R \ {0}, Re(V ) > 0)

(
sgn(s) + erf

(
is
√
πV
))

e−πs2V = − i

π
lim
ε→0+

∫ ∞

−∞

e−πV x2

x− s(1 + iε)
dx,

to obtain that

∫ τ+i∞+ε

0

fβ,M(z)√
i(z− τ)

dz = − i√
2Mπ

∑

ν≥1

∑

±
lim
ε→0+

∫ ∞

−∞

e
πiτx2

2M

x− (1 + iε)(β ± 2Mν)
dx

− i√
2Mπ

lim
ε→0+

∫ ∞

−∞

e
πiτx2

2M

x− (1 + iε)β
dx.

From this the second claimed term in the lemma may directly be obtained. �
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5. Bounding I(µ, k; z)
5.1. Rewriting I(µ, k; z). In the following lemma, we rewrite I(µ, k; z). To state the lemma, set

g(x) := e
−π(x+µ)2

4Mkαjz , Rg(x) := Re (g(x)) , Ig(x) := Im (g(x)) .

Lemma 5.1. For every δ > 0 and µ ∈ Z \ {0}, we have

I(µ, k; z) = sgn(µ)πie
− πµ2

4Mkαjz +

∫ δ

−δ

(
R′

g (y1,x) + iI ′g(y2,x)
)
dx+ sgn(µ)

∑

±
±
∫ ∞

δ

1

x
e
−π(x±|µ|)2

4Mkαjz dx

for some y1,x, y2,x between 0 and x (in particular, yℓ,x ∈ (−δ, δ)).
Proof. We make the change of variables x 7→ x+ µ in (4.1) to rewrite the integral as

∫ ∞

−∞

e
− πx2

4Mkαjz

x− (1 + iε)µ
dx =

∫ ∞

−∞

e
−π(x+µ)2

4Mkαjz

x− iεµ
dx.

We then split the integral into three pieces as
∫ ∞

−∞
=

∫ δ

−δ
+

∫ ∞

δ
+

∫ −δ

−∞
=: I1 + I2 + I3.

To evaluate I1, we note that by Taylor’s Theorem, there exist y1,x and y2,x between 0 and x such
that

Rg(x) = Rg(0) +R′
g(y1,x)x and Ig(x) = Ig(0) + I ′g(y2,x) x.

Therefore

g(x) = e
− πµ2

4Mkαjz +
(
R′

g(y1,x) + iI ′g(y2,x)
)
x.

Thus

lim
ε→0+

I1 = lim
ε→0+

∫ δ

−δ

e
− πµ2

4Mkαjz +
(
R′

g(y1,x) + iI ′g(y2,x)
)
x

x− iεµ
dx

= lim
ε→0+

e
− πµ2

4Mkαjz

∫ δ

−δ

1

x− iεµ
dx+

∫ δ

−δ

(
R′

g(y1,x) + iI ′g(y2,x)
)
dx. (5.1)

The second term on the right-hand side of (5.1) is precisely the second term in the claim.
Evaluating the integral explicitly, the first term in (5.1) equals

e
− πµ2

4Mkαjz lim
ε→0+

∫ δ

−δ

1

x− iεµ
dx = e

− πµ2

4Mkαjz lim
ε→0+

(Log (δ − iεµ)− Log (−δ − iεµ)) . (5.2)

Here and throughout, Log denotes the principal branch of the complex logarithm. We then evaluate,
using the fact that µ 6= 0,

lim
ε→0+

Log (δ − iεµ) = log(δ),

lim
ε→0+

Log (−δ − iεµ) =

{
Log(−δ) = log(δ) + πi if µ < 0,

Log(−δ) − 2πi = log(δ) − πi if µ > 0.

Therefore (5.2) becomes

πi sgn(µ)e
− πµ2

4Mkαjz .
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Since the paths of integration in I2 and I3 do not go through zero, we can plug in ε = 0 to obtain

lim
ε→0+

(I2 + I3) =
∫ ∞

δ

1

x
e
−π(x+µ)2

4Mkαjz dx+

∫ −δ

−∞

1

x
e
−π(x+µ)2

4Mkαjz dx. (5.3)

Making the change of variables x 7→ −x in the second integral, we see that (5.3) becomes
∫ ∞

δ

1

x
e
−π(x+µ)2

4Mkαjz dx−
∫ ∞

δ

1

x
e
−π(x−µ)2

4Mkαjz dx = sgn(µ)
∑

±
±
∫ ∞

δ

1

x
e
−π(x±|µ|)2

4Mkαjz dx. �

5.2. Asymptotics for I(µ, k; z). The main result in this subsection is the following approximation
of I(µ, k; z).

Proposition 5.2. If 1 ≤ k ≤ N and |Φ| ≤ 1
kN , then for 0 < δ < |µ|

2 we have, for some c > 0

I(µ, k; z) = −2
√
Mkαjz

µ
+O

(
k

3
2 |z| 32
µ3

+

(
1 +

|µ|δ
k|z| + log

( |µ|
δ

))
e−

cµ2

k
Re( 1

z )

)
.

Before proving Proposition 5.2, we approximate the third term from Lemma 5.1. We set A :=
πµ2

4Mkαj |z| and make the change of variables x 7→ |µ|x to obtain that the third term in Lemma 5.1

equals

sgn(µ)
∑

±
±
∫ ∞

δ
|µ|

1

x
e−

A|z|
z

(x±1)2dx. (5.4)

We split the integral at x = 1
2 . To approximate the contribution from x ≥ 1

2 , we define for d ∈ N0

Jd,± := Cd

(
z

2A|z|

)d−1 ∫ ∞

1
2

1

xd
e−A |z|

z
(x±1)2dx, (5.5)

where

Cd :=

{
(d− 1)! if d ≥ 1,

1 if d = 0.

Note that J1,± is the contribution from x ≥ 1
2 to the integral in (5.4). The following trivial bound

for Jd,± follows immediately by bringing the absolute value inside the integral.

Lemma 5.3. For d ∈ N0, we have

|Jd,±| ≤
2
√
πCdA

1
2
−d

√
|z|Re

(
1
z

) .

To obtain a better approximation for Jd,±, we next relate Jd,± with Jd+1,± and Jd−1,±.

Lemma 5.4. For d ∈ N, we have

Jd,± = ∓
(
−(d− 1)!

(
z

A|z|

)d

e−
A|z|
z ( 1

2
±1)

2

+ Jd+1,± +max(d− 1, 1)
z

2A|z|Jd−1,±

)
.

Proof. We first rewrite

Jd,± = Jd,± ± Cd

Cd−1

z

2A|z|Jd−1,± ∓ Cd

Cd−1

z

2A|z|Jd−1,±. (5.6)
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Using integration by parts, the first two terms in (5.6) equal

±Cd

(
z

2A|z|

)d−1 ∫ ∞

1
2

1

xd
(x± 1)e−A

|z|
z
(x±1)2dx = ±Cd

(
z

A|z|

)d

e−
A|z|
z ( 1

2
±1)

2

∓ Jd+1,±.

Plugging back into (5.6) and using Cd = (d− 1)! and Cd

Cd−1
= max(d− 1, 1) yields the claim. �

We also require an approximation for J0,±.

Lemma 5.5. There exists c > 0 such that

J0,± = 2δ±1=−1

√
πA|z|
z

+O



√
Ae−cA|z|Re( 1

z )
√

|z|Re
(
1
z

)


 .

Proof. We first make the change of variables x 7→ x∓ 1 in (5.5) to obtain that

J0,± =
2A|z|
z

∫ ∞

1
2
±1
e−

A|z|
z

x2
dx.

For ±1 = −1, we rewrite this as

J0,− =
2A|z|
z

(∫ ∞

−∞
e−

A|z|
z

x2
dx−

∫ ∞

1
2

e−
A|z|
z

x2
dx

)

=
2A|z|
z

∫ ∞

−∞
e−

A|z|
z

x2
dx+O

(
A

∫ ∞

1
2

e−A|z|Re( 1
z )x

2
dx

)
.

Hence we have

J0,± = 2δ±1=−1
A|z|
z

∫ ∞

−∞
e−

A|z|
z

x2
dx+O

(
A

∫ ∞

1± 1
2

e−A|z|Re( 1
z )x

2
dx

)
.

Noting that Re(1z ) > 0, we then bound

∫ ∞

1± 1
2

e−A|z|Re( 1
z )x

2
dx ≤

√
πe−

1
4
A|z|Re( 1

z )

2
√
A|z|Re

(
1
z

) .

The claim follows, evaluating ∫ ∞

−∞
e−

A|z|
z

x2
dx =

√
πz

A|z| . �

We next combine Lemmas 5.4 and 5.5 to obtain an approximation for J1,±. To compare the
asymptotic growth of different terms, we note that by (3.4) and the fact that k ≤ N

√
Re
(
1
z

)

k
=

1

kN
√

1
N4 +Φ2

≥ 1√
2
, (5.7)

k2

N2
≤ k|z| = k2

(
1

N4
+Φ2

) 1
2

≤
√
2. (5.8)

Lemma 5.6. If 1 ≤ k ≤ N and |Φ| < 1
kN , then we have

J1,± = δ±1=−1

√
πz

A|z| +O
(
A− 3

2 + e−cA|z|Re( 1
z )
)
.
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Proof. By Lemma 5.4 with d = 1, we have

J1,± = ∓
(
− z

A|z|e
−A|z|

z ( 1
2
±1)

2

+ J2,± +
z

2A|z|J0,±

)
.

We then plug in Lemma 5.4 again twice (once with d = 2 and then once with d = 1) to obtain that

J1,± = ∓
((

− z

A|z| +
(
−1

2
± 1

)(
z

A|z|

)2
)
e−

A|z|
z ( 1

2
±1)

2

∓ J3,±

+
z

2A|z|J2,± +

(
z

2A|z| +
(

z

2A|z|

)2
)
J0,±

)
.

The first term can be bounded against

O

((
1

A
+

1

A2

)
e−cA|z|Re( 1

τ )
)

= O

(
1

A
e−cA|z|Re( 1

z )
)
,

using that A≫ 1 by (5.8). Moreover, by Lemma 5.3, we have

|J3,±| ,
z

2A|z| |J2,±| ≪
A−2

√
A|z|Re

(
1
z

) .

For the terms with J0,±1, we use Lemma 5.5 to approximate these by

∓δ±1=−1

√
πz

A|z| +O


A− 3

2 +
e−cA|z|Re( 1

z )
√
A|z|Re

(
1
z

)


 .

Noting that ∓δ±1=−1 = δ±1=−1, this gives

J1,± = δ±1=−1

√
πz

A|z| +O


A− 3

2 +


 1

A
+

1√
A|z|Re

(
1
z

)


 e−cA|z|Re( 1

z ) +
A−2

√
A|z|Re

(
1
z

)


 .

We then use (5.7) and the trivial bound |z|Re(1z ) ≤ 1 to compare the O-terms, obtaining

A−2

√
A|z|Re

(
1
z

) ≪ A− 3
2 and

1

A
≪ 1√

A|z|Re
(
1
z

) ≪ 1.

This gives the claim. �

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. The first term in Lemma 5.1 yields the second error term in Proposition
5.2. For the second term in Lemma 5.1, we note that

Rg(y) = e
−π(y+µ)2

4Mkαj
Re( 1

z ) cos

(
−π(y + µ)2

4Mkαj
Im

(
1

z

))

Ig(y) = e
−π(y+µ)2

4Mkαj
Re( 1

z ) sin

(
−π(y + µ)2

4Mkαj
Im

(
1

z

))
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and then explicitly take the derivatives and bound |Re(z)| < |z|, |Im(z)| < |z|, and the absolute
value of the sines and cosines that occur against 1. This yields

∣∣R′
g (y1,x) + iI ′g (y2,x)

∣∣ ≤ π

Mkαj |z|

2∑

ℓ=1

|yℓ,x + µ| e−
π(yℓ,x+µ)2

4Mkαj
Re( 1

z ).

To bound the right-hand side, we use yℓ,x < δ < |µ|
2 to conclude that |µ|

2 ≤ |yℓ,x + µ| ≤ 3|µ|
2 .

Noting that Re(1z ) > 0 yields that the second term in Lemma 5.1 contributes the third error term
in Proposition 5.2. We rewrite the third term in Lemma 5.1 as in (5.4) and split the integral in
(5.4) at 1

2 . For δ
|µ| ≤ x ≤ 1

2 , we bring the absolute value inside and note that for x ≤ 1
2 we have

|x± 1| ≥ 1
2 to bound

∫ 1
2

δ
|µ|

1

x
e−

A|z|
z

(x±1)2dx ≤ e−
A|z|
4

Re( 1
z )
∫ 1

2

δ
|µ|

1

x
dx≪

(
1 + log

(
δ

|µ|

))
e−

A|z|
4

Re( 1
z ). (5.9)

We next turn to the contribution from x ≥ 1
2 . By Lemma 5.6, we have

sgn(µ)
∑

±
±J1,± = − sgn(µ)

√
πz

A|z| +O
(
A− 3

2 + e−cA|z|Re( 1
z )
)
. (5.10)

As noted below (5.5), J1,± is precisely the contribution from x ≥ 1
2 to the integral in (5.4).

Therefore, combining (5.10) with (5.9) yields

sgn(µ)
∑

±
±
∫ ∞

δ
|µ|

1

x
e−

A|z|
z

(x±1)2dx = − sgn(µ)

√
πz

A|z| +O

(
A− 3

2 +

(
1 + log

(
δ

|µ|

))
e−cA|z|Re( 1

z )
)
.

Plugging in A = πµ2

4Mkαj |z| gives that this equals

−2
√
Mkαjz

µ
+O

(
k

3
2 |z| 32
|µ|3 +

(
1 + log

(
δ

|µ|

))
e−

cµ2

k
Re( 1

z )

)
,

where the value of c is changed from the previous line. These correspond to the main term and the
first, second, and fourth error terms in Proposition 5.2. �

We directly obtain the following corollary by choosing δ := k|z|
2
√
2|µ| in Proposition 5.2.

Corollary 5.7. We have, for some c > 0

I(µ, k; z) = − 2√
Mkαjz

µ+O

(
k

3
2 |z| 32
|µ|3 + log

(
µ2

k|z|

)
e−

cµ2

k
Re( 1

z )

)
.

5.3. Summing I(µ, k; z). We next approximate the sum over ν in the second term of Lemma 4.2.

Lemma 5.8. There exists c > 0 such that for all 0 < k ≤ N and ℓ ∈ LMk we have

∑∗

ν≥0

∑

±
I (ℓ± 2Mkν, k; z) = −π

√
αjz
Mk cot

(
πℓ

2Mk

)
+O

(
k
3
2 |z|

3
2

|ℓ|3

)
+O

(
log(k|z|)e− cℓ2

k
Re( 1

z )
)

(5.11)

= O

(√
k|z|
|ℓ| + log(k|z|)e− cℓ2

k
Re( 1

z )
)

(5.12)

= O
(
nε

|ℓ|

)
. (5.13)
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Remark. Note that the first term on the right-hand side of (5.11) is always finite because 1−Mk ≤
ℓ ≤Mk with ℓ 6= 0 implies that the parameter is never an integer multiple of π.

Proof of Lemma 5.8. Plugging Corollary 5.7 with µ = ℓ± 2Mkν into the left-hand side of Lemma
5.8 and using

π cot(πx) = lim
N→∞

(
1

x
+

N∑

n=1

(
1

x+ n
+

1

x− n

))
,

the main term in (5.11) becomes the claimed main term.
To obtain (5.11), we are left to bound the error terms. Note that since 1−Mk ≤ ℓ ≤Mk (with

ℓ 6= 0), we have 2Mk
|ℓ| ≥ 2. We conclude that since |2Mk

ℓ ν − 1| ≥ 2ν − 1 ≥ ν for ν ≥ 1, the sum of

the first O-term in Corollary 5.7 is
∑∗

ν≥0

∑

±

1

|ℓ± 2Mkν|3 ≤ 1

|ℓ|3 +
2

|ℓ|3
∑

ν≥1

1

ν3
≪ 1

|ℓ|3 ,

yielding the first error-term in the lemma. For the final error-term, we write

∑∗

ν≥0

∑

±
log

( |ℓ± 2Mkν|2
k|z|

)
e−

c(ℓ±2Mkν)2

k
Re( 1

z )

= − log (k|z|)
∑∗

ν≥0

∑

±
e−

c(ℓ±2Mkν)2

k
Re( 1

z ) + 2
∑∗

ν≥0

∑

±
log (|ℓ± 2Mkν|) e−

c(ℓ±2Mkν)2

k
Re( 1

z ). (5.14)

Since 1 −Mk ≤ ℓ ≤ Mk, we have d := |ℓ ± 2Mkν| ≥ |ℓ| for every ν and the terms in all sums in
(5.14) are non-negative. Hence we may bound (5.14) against a constant multiple of

e−
cℓ2

2k
Re( 1

z ) log(k|z|)
∑

d≥|ℓ|
e
− cd2

2
√

2 + e−
cℓ2

2k
Re( 1

z )
∑

d≥|ℓ|
log(d)e

− cd2

2
√

2 .

Each of the sums is absolutely convergent and may be bounded by the sum with |ℓ| = 1, giving a
uniform bound independent of ℓ. The first term is dominant because log(k|z|) ≫ 1, yielding (5.11).
The approximation (5.12) follows by showing that

k
3
2 |z| 32
|ℓ|3 ,

√
|z|
k

∣∣∣∣cot
(

πℓ

2Mk

)∣∣∣∣≪
√
k|z|
ℓ

.

Finally (5.13) follows by (5.7), (5.8), and (5.12). �

6. Proof of Theorem 1.1

6.1. Kloosterman’s Fundamental Lemma. To describe Kloosterman’s Fundamental Lemma [7,
Lemma 6], we note that for each 0 ≤ h < k with gcd(h, k) = 1, there exists a unique ̺(h) = ̺k(h)
with 0 < ̺(h) ≤ k for which

h (N + ̺(h)) ≡ −1 (mod k).

Lemma 6.1. For any ν ∈ Z4, k ∈ N, 0 < ̺ < k, and n ∈ Z, we have∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k
gcd(h,k)=1
̺(h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, νj ; k)

∣∣∣∣∣∣∣∣∣∣∣

= O
(
k2+

7
8
+ε gcd(n, k)

1
4

)
.
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Here the O-constants is absolute (and in particular independent of ν and ̺).

One obtains the value of ̺(h) by (3.1) and (3.3).

Lemma 6.2. We have
̺(h) = ̺k,1(h).

6.2. Setting up the Circle Method. Fix J ⊆ {1, 2, 3, 4} and write F (q) := Fr,M,α,J(q). By
Cauchy’s Theorem, we have

c(n) := cr,M,α,J(n) =
1

2πi

∫

C

F (q)

qn+1
dq,

where C is an arbitrary path inside the unit circle that loops around zero in the counterclockwise

direction. We choose the circle with radius e−
2π
N2 with N := ⌊√n⌋ and the parametrization q =

e−
2π
N2 +2πit with 0 6 t 6 1. Thus

c(n) =

∫ 1

0
F
(
e−

2π
N2 +2πit

)
e

2πn

N2 −2πintdt.

Decomposing the path of integration along the Farey arcs −ϑ′h,k 6 Φ 6 ϑ
′′
h,k with Φ = t− h

k ,

c(n) =
∑

06h<k6N
gcd(h,k)=1

e−
2πinh

k

∫ ϑ
′′
h,k

−ϑ′
h,k

F
(
e

2πi
k

(h+iz)
)
e

2πnz
k dΦ, (6.1)

where z = k( 1
N2 − iΦ) as above. Since for J = {1, 2, 3, 4} we may use Lemma 2.4, we consider the

case that J 6= {1, 2, 3, 4}. For 1 ≤ ℓ ≤ 4, ν ∈ N4
0, λ ∈ L4

Mk, and ε ∈ {±}4, set

Iν,λ,ε,ℓ(z) = Iν,λ,ε,ℓ,M,k(z) :=





1
2Mk−1 if ℓ ∈ J,

εℓ
2Mk−1 if ℓ /∈ J and νℓ 6= 0,∑∗

ν≥0

∑

±
I(λℓ ± 2Mkν, k; z) if ℓ /∈ J and νℓ = 0,

dν,λ,ε,ℓ := εℓνℓ + δνℓ=0δℓ/∈Jλℓ.

By Lemmas 4.1 and 4.2, we have

16M2F
(
e

2πi
k

(h+iz)
) 4∏

j=1

√
αj (6.2)

=
e

πzr2

Mk

∑4
j=1 αj

k2z2

∑∗

ν∈N4
0

∑

λ∈L4
Mk

∑

ε∈{±}4

4∏

j=1

e
−

πν2j
4Mkαjz

+εj
πirνj
Mk G(2Mαjh, 2rαjh+ dν,λ,ε,j ; k) Iν,λ,ε,j(z).

Plugging (6.2) back into (6.1), we see that the contribution to c(n) from the term ν ∈ N4
0 is

1
16M2

∏4
j=1

√
αj

1

2

∑4
j=1

δνj=0
times

Iν(n) = Iν,α,M,J(n) :=
∑

0≤h<k≤N
gcd(h,k)=1

e−
2πinh

k

k2

∑

λ∈L4
Mk

∑

ε∈{±}4

4∏

j=1

eεj
πirνj
Mk G(2Mαjh, 2rαjh+ dν,λ,ε,j ; k)

×
∫ ϑ′′

h,k

−ϑ′
h,k

1

z2
e

2π
k

(

n+ r2

2M

∑4
j=1 αj

)

z−
∑4

j=1

πν2j
4Mkαjz

4∏

j=1

Iν,λ,ε,j(z)dΦ.
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6.3. Bounding
∑

ν∈N4
0\{0} Iν(n). The following lemma proves useful for bounding the sum of

Iν(n) with ν 6= 0.

Lemma 6.3. Suppose that 0 ≤ ̺1 ≤ ̺2 ≤ ∞, c > 0, and for each 0 < k ≤ N let a subset
Λk ⊆ Z4 \ {0} be given. Then, with ‖ν‖2 :=

∑
1≤j≤4 ν

2
j ,

∑

0<k≤N

1

k2

∑

ν∈Λk

∑

λ∈L4
Mk

4∏

j=1

1

λj

∑

ε∈{±}4

̺2∑

̺=̺1

∫ 1
k(N+̺)

1
k(N+̺+1)

1

|z|2 e
−c‖ν‖2

Re( 1
z )

k dΦ

×

∣∣∣∣∣∣∣∣∣∣∣

∑

0<h<k
gcd(h,k)=1
̺(h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, 2αjh± dν,λ,ε,j; k)

∣∣∣∣∣∣∣∣∣∣∣

≪ n
15
16

+ε.

Proof. We first use Lemma 6.1 and the fact that

∑

λj∈LMk

1

λj
≪ log(k) ≪ kε. (6.3)

Uniformly bounding against the cases ̺1 = 0 and ̺2 = ∞ in the lemma, the left-hand side of the
lemma may be bounded against

≪
∑

0<k≤N

k
7
8
+ε gcd(n, k)

1
4

∑

ν∈Λk

∫ 1
kN

0

1

|z|2 e
−c‖ν‖2

Re( 1
z )

k dΦ. (6.4)

By assumption, for every ν ∈ Λk we have ‖ν‖ ≥ 1 and using (5.7) we obtain that (6.4) may be
bounded against

≪
∑

0<k≤N

k
7
8
+ε gcd(n, k)

1
4

∑

ν∈Λk

e−
c
4
‖ν‖2

∫ 1
kN

0

1

|z|2 e
− c

2

Re( 1
z )

k dΦ. (6.5)

It remains to show that (6.5) is O(n
15
16

+ε). Since Λk ⊆ Z4 \ {0}, we may bound the sum over ν

uniformly by ∑

ν∈Λk

e−
c
4
‖ν‖2 ≤

∑

ν∈Z4\{0}
e−

c
4
‖ν‖2 ≪ 1.

We then split the sum and integral in (6.5) into three pieces:

∑
1
:

∑

0<k≤N1−ℓ

∫ 1

kN1+ℓ

0
,

∑
2
:

∑

0<k≤N1−ℓ

∫ 1
kN

1

kN1+ℓ

,
∑

3
:

∑

N1−ℓ<k≤N

∫ 1
kN

0

for ℓ some (arbitrary small) number. We first consider
∑

1. Plugging 0 < |Φ| < 1
kN1+ℓ into the

right-hand side of the equality in (5.7), we have

Re

(
1

z

)
>
kN2ℓ

2
.

Combining this with the first inequality in (5.8), the contribution from
∑

1 to (6.5) is O(e−
c
8
N2ℓ

).
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We next turn to
∑

2. Using the fact Re(1z ) > 0, we bound

∑
2
≪

∑

0<k≤N1−ℓ

k
7
8
+ε gcd(n, k)

1
4

∫ 1
kN

1

kN1+ℓ

1

|z|2 dΦ.

One can show that the integral is O(N
1+ℓ

k ), yielding
∑

2 ≪ N
15
8
+ ℓ

8
+ε. Choosing ℓ sufficiently small

(depending on ε), we obtain
∑

2 = O(n
15
16

+ε). We finally turn to
∑

3. We bound, choosing ℓ ≤ 8ε

∑
3
≪ N2

∑

N1−ℓ<k≤N

k−
9
8
+ε gcd(n, k)

1
4 arctan

(
N

k

)
≪ n

15
16

+ε. �

We next bound the contribution from the sum over all h, k of the terms ν 6= 0 from (6.2).

Proposition 6.4. If J 6= {1, 2, 3, 4}, then
∑∗

ν∈N4
0\{0}

Iν(n) = O
(
n

15
16

+ε
)
.

Proof. Writing k + kj = N + ̺k,j(h) as in (3.2), we split the integral in Iν(n) as

∫ ϑ′′
h,k

−ϑ′
h,k

=

∫ 0

− 1

k(N+̺k,1(h))

+

∫ 1

k(N+̺k,2(h))

0
=

∞∑

̺=̺k,1(h)

∫ − 1
k(N+̺+1)

− 1
k(N+̺)

+
∞∑

̺=̺k,2(h)

∫ 1
k(N+̺)

1
k(N+̺+1)

. (6.6)

Interchanging the sums on h and ̺ for the first sum in (6.6), its contribution to Iν(n) equals

∑

0<k≤N

1

k2

∑

λ∈L4
Mk

∑

ε∈{±}4
e

πir
Mk

∑4
j=1 εjνj

∞∑

̺=0

∫ − 1
k(N+̺+1)

− 1
k(N+̺)

1

z2
e

2π
k

(

n+ r2

2M

∑4
j=1 αj

)

z−
∑4

j=1

πν2j
4Mkαjz

×
4∏

j=1

Iν,λ,ε,j(z)dΦ
∑

0≤h<k
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, 2αjh+ dν,λ,ε,j; k) . (6.7)

Similarly, interchanging the sums over h and ̺ in the second sum in (6.6) and then applying Lemma
3.1 yields a contribution to Iν(n) of

∑

0<k≤N

1

k2

∑

λ∈L4
Mk

∑

ε∈{±}4
e

πir
Mk

∑4
j=1 εjνj

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

1

z2
e

2π
k

(

n+ r2

2M

∑4
j=1 αj

)

z−∑4
j=1

πν2j
4Mkαjz

×
4∏

j=1

Iν,λ,ε,j(z)dΦ
∑

0≤h<k
gcd(h,k)=1
̺k,1(k−h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, 2αjh+ dν,λ,ε,j; k) . (6.8)

Making the change of variables h 7→ k − h in the inner sum, the inner sum becomes

∑

0≤h<k≤N
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, 2αjh− dν,λ,ε,j; k).
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We then take the absolute value inside all of the sums except the sum on h in both (6.7) and (6.8).
Noting that |z|2 and Re(1z ) are the same for Φ and −Φ, we may make the change of variables
Φ 7→ −Φ in (6.7) to bound both (6.7) and (6.8) against

≪
∑

0<k≤N

1

k2

∑

λ∈L4
Mk

∑

ε∈{±}4

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

1

|z|2 e
2π
k

(

n+ r2

2M

∑4
j=1 αj

)

Re(z)−∑4
j=1

πν2j
4Mkαj

Re( 1
z )

× |Iν,λ,ε,j(z)| dΦ

∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k G(2Mαjh, 2αjh± dν,λ,ε,j; k)

∣∣∣∣∣∣∣∣∣∣∣

, (6.9)

where ± is chosen as “+” for (6.7) and “−” for (6.8). We note that since Re(z) = k
N2 ∼ k

n , we have

e
2π
k

(

n+ r2

2M

∑4
j=1 αj

)

Re(z) ≪ 1. (6.10)

We next bound |Iν,λ,ε,j(z)|. In the case that j ∈ J or νj 6= 0, we trivially bound (using λj ∈ LMk)

Iν,λ,ε,j(z) =
1

2Mk − 1
<

1

|λj |
.

If both j /∈ J and νj = 0, then we use (5.13) to bound

|Iν,λ,ε,j(z)| ≪
nε

|λj|
. (6.11)

Hence, setting c := π
4M minj(|αj |) , (6.9) may be bounded against

≪ nε
∑

0<k≤N

1

k2

∑

λ∈L4
Mk

4∏

j=1

1

|λj |
∑

ε∈{±}4

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

1

|z|2 e
−c‖ν‖2

Re( 1
z )

k dΦ

×

∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k≤N
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k

4∏

j=1

G(2Mαjh, 2αjh± dν,λ,ε,j; k)

∣∣∣∣∣∣∣∣∣∣∣

.

By Lemma 6.2, we have ̺(h) = ̺k,1(h). Summing over ν ∈ N4
0 \ {0}, we may therefore use Lemma

6.3 with Λk = N4
0 \ {0}, ̺1 = 0, and ̺2 = ∞ to conclude that

∑∗
ν 6=0

Iν(n) is O(n
15
16

+ε), giving the

bound claimed in the proposition. �

6.4. Bounding I0(n). This subsection is devoted to bounding I0(n).

Proposition 6.5. If J 6= {1, 2, 3, 4}, then

I0(n) = O
(
n

15
16

+ε
)
.

Proof. As in the proof of Proposition 6.4, we first split the sum as in (6.6) and interchange the
sums on h and ̺ and then take the absolute value inside all of the sums other than the sum on h.



20 KATHRIN BRINGMANN, MIN-JOO JANG, AND BEN KANE

Since J 6= {1, 2, 3, 4}, without loss of generality we have 4 /∈ J . For 1 ≤ j ≤ 3, we use (6.11) and
we bound I0,λ,ε,4(z) with (5.12). Plugging in (6.10), we hence obtain

I0(n) ≪ nε
∑

0<k≤N

1

k2

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

1

|z|2
∑

λ∈L4
Mk

O

(√
k|z|
|λ4|

+ log(k|z|)e−
cλ24 Re( 1

z )
k

)
dΦ

×
3∏

j=1

1

|λj|

∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k

4∏

j=1

G
(
2Mαjh, 2αjh± δj /∈Jλj; k

)

∣∣∣∣∣∣∣∣∣∣∣

. (6.12)

Plugging in Lemma 6.2, the contribution to I0(n) from the first term in the O-constant in (6.12)
is bounded by

≪ nε
∑

0<k≤N

1

k
3
2

∑

λ∈L4
Mk

4∏

j=1

1

|λj |

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

dΦ

|z| 32

∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k
gcd(h,k)=1
̺(h)≤̺

e−
2πinh

k

4∏

j=1

G
(
2Mαjh, 2αjh± δj /∈Jλj; k

)

∣∣∣∣∣∣∣∣∣∣∣

.

Using Lemma 6.1 and (6.3), we can bound this against

≪ nε
∑

0<k≤N

k
11
8
+ε gcd(n, k)

1
2

∑

λ∈L4
Mk

4∏

j=1

1

|λj |

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

dΦ

|z| 32

≪ nε
∑

0<k≤N

k
11
8
+ε gcd(n, k)

1
2

∫ 1
kN

0

dΦ

|z| 32
. (6.13)

We split the integral in (6.13) into the ranges Φ < 1
N2 and Φ ≥ 1

N2 . Using that for Φ ≥ 1
N2 , we

have |z| 32 ≫ k
3
2Φ

3
2 , the contribution from Φ ≥ 1

N2 to (6.13) may be bounded against

≪ nε
∑

0<k≤N

k−
1
8
+ε gcd(n, k)

1
2

∫ ∞

1
N2

Φ− 3
2 dΦ ≪ nεN

∑

0<k<N

k−
1
8
+ε gcd(n, k)

1
2 .

For 0 < Φ < 1
N2 , we use the trivial bound |z| 32 ≫ k

3
2

N3 , to obtain that the contribution from

0 < Φ < 1
N2 to (6.13) is

≪ nεN
∑

0<k≤N

k−
1
8
+ε gcd(n, k)

1
2 .

Therefore (6.13) is O(n
15
16

+ε).
We next consider the contribution to (6.12) coming from the second O-term. Using (5.8) to

bound log(k|z|) ≪ nε, the contribution to (6.12) from the second term in the O-constant is

≪ nε
∑

0<k≤N

1

k2

∑

λ∈L4
Mk

3∏

j=1

1

|λj |
∑

ε∈{±}4

∞∑

̺=0

∫ 1
k(N+̺)

1
k(N+̺+1)

1

|z|2 e
−

cλ24 Re( 1
z )

k dΦ
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×

∣∣∣∣∣∣∣∣∣∣∣

∑

0≤h<k
gcd(h,k)=1
̺k,1(h)≤̺

e−
2πinh

k

4∏

j=1

G
(
2Mαjh, 2αjh+ δj /∈Jλj ; k

)

∣∣∣∣∣∣∣∣∣∣∣

≪ n
15
16

+ε,

using Lemma 6.3 with ̺1 = 0, ̺2 = ∞, and Λk = {(0 0 0 λ4)
T : λ4 ∈ LMk} yields that this may be

bounded against O(n
15
16

+ε). �

6.5. Proof of Theorem 1.1. We are now ready to prove the main theorem.

Proof of Theorem 1.1. (1) We first use Lemma 2.3. If M is odd, then we use the fact that

Θ+
r,M,α(τ) = Θ+

2r,2M,α

(τ
4

)
.

Thus we may assume without loss of generality that M is even. We deal with the terms from
Lemma 2.3 termwise for each J ⊆ {1, 2, 3, 4}.

Plugging Propositions 6.4 and 6.5 into (6.2), we conclude that for J 6= {1, 2, 3, 4} we have

cr,M,α,J(n) = O
(
n

15
16

+ε
)
.

Thus by Lemma 2.3, we have

sr,2M,α


2Mn+ r2

∑

1≤j≤4

αj


 =

1

16
cr,M,α(n) +O

(
n

15
16

+ε
)
.

Plugging in Lemma 2.4 (1) then yields

sr,2M,α


2Mn+ r2

∑

1≤j≤4

αj


 =

1

16
s∗r,2M,α


2Mn + r2

∑

1≤j≤4

αj


+O

(
n

15
16

+ε
)
.

Since

sr,2M,α(n) = s∗r,2M,α(n) = 0

if n 6≡ r2
∑4

j=1 αj (mod 2M), the claim follows.

(2) By Lemma 2.1, we have

rm,α(n) = r+m,α(n) +O
(
n

1
2
+ε
)
.

Lemma 2.2 then yields

r+m,α(n) = sm,2(m−2),α


8(m− 2)


n−

∑

1≤j≤4

αj


+m2

∑

1≤j≤4

αj


 .

Thus by part (1) and Lemma 2.4 we have

r+m,α(n) =
1

16
s∗m,2(m−2),α


8(m− 2)


n−

∑

1≤j≤4

αj


+m2

∑

1≤j≤4

αj


+O

(
n

15
16

+ε
)

=
1

16
r∗m,α(n) +O

(
n

15
16

+ε
)
. �
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7. Proof of Corollary 1.2 and Corollary 1.3

In this section, we prove Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. By Theorem 1.1 (2), we have

r6,α(n) =
1

16
r∗6,α(n) +O

(
n

15
16

+ε
)
. (7.1)

Completing the square in the special case α = (1, 1, 1, 1), we obtain

r∗6,(1,1,1,1)(n) = s∗3,4,(1,1,1,1)(8n+ 4).

Note that by the change of variables xj 7→ εjxj with ε ∈ {±}4, we have

s∗3,4,(1,1,1,1)(8n+ 4) =
1

16
s∗1,2,(1,1,1,1)(8n + 4).

Cho [4, Example 3.3] computed

s∗1,2,(1,1,1,1)(8n+ 4) = 16σ(2n + 1).

Thus

r∗6,(1,1,1,1)(n) = σ(2n + 1).

Plugging this back into (7.1) yields the claim. �

We next prove Corollary 1.3.

Proof of Corollary 1.3. Using [4, Example 3.4], the argument is essentially identical to the proof of
Corollary 1.2, except that in this case it is not immediately obvious that the main term is always
positive. For this we use multiplicativity to bound

−
∑

d|(8n+5)

(
8

d

)
d ≥ ϕ(8n + 5) ≫ n1−ε,

where ϕ denotes the Euler totient function. �

We finally prove Corollary 1.4.

Proof of Corollary 1.4. By Theorem 1.1 (2), we have

r5,(1,1,1,1)(n) =
1

16
r∗5,(1,1,1,1)(n) +O

(
n

15
16

+ε
)
. (7.2)

Completing the square, we obtain

r∗5,(1,1,1,1)(n) = s∗5,6,(1,1,1,1)(24n + 4). (7.3)

Using [13, Proposition 2.1], it is not hard to show that the generating function Θ∗
5,6,(1,1,1,1) for

s∗5,6,(1,1,1,1) is a modular form of weight two on Γ0(144). We next claim that

Θ∗
5,6,(1,1,1,1)(τ) =

2

3
E(4τ) +

1

3
η4(24τ), (7.4)

where

E(τ) :=
∑

n≡1 (mod 6)

σ(n)qn, η(τ) := q
1
24

∏

n≥1

(1− qn) .
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For this we note first that τ 7→ η4(24τ) is a cusp form of weight two on Γ0(144). We next recall that
for a translation-invariant function f with Fourier expansion f(τ) =

∑
n≥0 cf (v;n)q

n, the quadratic
twist of f with a character χ is given by

f ⊗ χ(τ) :=
∑

n≥0

χ(n)cf (v;n)q
n.

For δ ∈ N, one also defines the V -operator and U -operator by

f
∣∣Vδ(τ) :=

∑

n≥0

cf (δv;n) q
δn, f

∣∣Uδ(τ) :=
∑

n≥0

cf

(v
δ
; δn
)
qn.

A straightforward generalization of the proof for holomorphic modular forms (see [8, Proposition 17
(b) of Section 3] and [9, Lemma 1]) yields that if f satisfies weight k ∈ Z modularity on Γ0(N) and
χ is a character with modulusM , then f ⊗χ satisfies weight k modularity on Γ0(lcm(N,M2)) with
character χ2, f |Uδ satisfies weight k modularity on Γ0(lcm( N

gcd(N,δ) , δ)), and f |Vδ satisfies weight k

modularity on Γ0(δN). Recall the weight two Eisenstein series

E2(τ) := 1− 24
∑

n≥1

σ(n)qn

and set χD(n) := (Dn ). We see that

E = − 1

48

(
E2 ⊗ χ−3 + E2 ⊗ χ2

−3

) ∣∣ (1− U2V2) .

Letting Ê2(τ) := E2(τ)− 3
πv be the completed weight two Eisenstein series, we easily conclude

E = − 1

48

(
Ê2 ⊗ χ−3 + E2 ⊗ χ2

−3

) ∣∣ (1− U2V2) .

Since Ê2 is modular of weight two on SL2(Z), we see that E is modular of weight two on Γ0(36).
Since it is holomorphic, we conclude that the right-hand side of (7.4) is a weight two modular
form on Γ0(144). By the valence formula, (7.4) is true as long as it is true for the first 48 Fourier
coefficients, which is easily checked with a computer.

By work of Deligne [5], we know that the n-th coefficient of η4(24τ) is ≪ n
1
2
+ε. Therefore,

writing the n-th coefficient of E as cE(n), we conclude from (7.4) that

s∗5,6,(1,1,1,1)(24n + 4) =
2

3
cE(6n+ 1) +O

(
n

1
2
+ε
)
=

2

3
σ(6n + 1) +O

(
n

1
2
+ε
)
.

Plugging back into (7.3) and then plugging this into (7.2) implies that

r5,(1,1,1,1)(n) =
1

16
r∗5,(1,1,1,1)(n) +O

(
n

15
16

+ε
)
=

1

24
σ(6n + 1) +O

(
n

15
16

+ε
)
. �
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